

CENTRO UNIVERSITÁRIO CHRISTUS

CURSO DE ENGENHARIA CIVIL

CARLOS EDUARDO DE SOUSA PINTO

ANÁLISE ESTATÍSTICA DE MÉTODOS SEMIEMPÍRICOS DE PREVISÃO DE CAPACIDADE DE CARGA APLICADOS A ESTACAS HÉLICE CONTÍNUA MONITORADA NO MUNICÍPIO DE FORTALEZA

FORTALEZA

CARLOS EDUARDO DE SOUSA PINTO

ANÁLISE ESTATÍSTICA DE MÉTODOS SEMIEMPÍRICOS DE PREVISÃO DE CAPACIDADE DE CARGA APLICADOS A ESTACAS HÉLICE CONTÍNUA MONITORADA NO MUNICÍPIO DE FORTALEZA

Trabalho de Conclusão de Curso (TCC) apresentado ao curso de Engenharia Civil do Centro Universitário Christus, como requisito parcial para obtenção do título de bacharel em Engenharia Civil.

Orientador: Prof Dr. Fernando Feitosa Monteiro

FORTALEZA

Dados Internacionais de Catalogação na Publicação Centro Universitário Christus - Unichristus Gerada automaticamente pelo Sistema de Elaboração de Ficha Catalográfica do Centro Universitário Christus - Unichristus, com dados fornecidos pelo(a) autor(a)

P659a	Pinto, Carlos Eduardo de Sousa. ANÁLISE ESTATÍSTICA DE MÉTODOS SEMIEMPÍRICOS DE PREVISÃO DE CAPACIDADE DE CARGA APLICADOS A ESTACAS HÉLICE CONTÍNUA MONITORADA NO MUNICÍPIO DE FORTALEZA / Carlos Eduardo de Sousa Pinto 2023. 136 f. : il. color.
	Trabalho de Conclusão de Curso (Graduação) - Centro Universitário Christus - Unichristus, Curso de Administração, Fortaleza, 2023. Orientação: Prof. Dr. Fernando Feitosa Monteiro.
	1. Estimativa de capacidade de carga. 2. Métodos semiempíricos . 3. Análise estatística. I. Título.
	CDD 658

CARLOS EDUARDO DE SOUSA PINTO

ANÁLISE ESTATÍSTICA DE MÉTODOS SEMIEMPÍRICOS DE PREVISÃO DE CAPACIDADE DE CARGA APLICADOS A ESTACAS HÉLICE CONTÍNUA MONITORADA NO MUNICÍPIO DE FORTALEZA

Trabalho de Conclusão de Curso (TCC) apresentado ao curso de Engenharia Civil do Centro Universitário Christus, como requisito parcial para obtenção do título de bacharel em Engenharia Civil.

Orientador: Prof Dr. Fernando Feitosa Monteiro

Aprovada em ___/__/2023

BANCA EXAMINADORA

Prof. Dr Alfran Sampaio Moura

Universidade Federal do Ceará (UFC)

Prof. Me Ivelise Marconi Strozberg

Centro Universitário Christus (Unichristus)

Prof. Dr Fernando Feitosa Monteiro

Centro Universitário Christus (Unichristus)

AGRADECIMENTOS

Agradeço primeiramente a Deus por me acompanhar e me guiar durante toda a minha jornada acadêmica.

Sou grato pelo meu orientador, Fernando Feitosa Monteiro por ter aceitado o desafio de me orientar a desenvolver este trabalho e prestar todo o apoio e acompanhamento necessário.

Agradeço também a todos os professores e a equipe da coordenação da Engenharia Civil da Unichristus por contribuir com a minha formação.

Aos meus pais, meu irmão e familiares, que me deram o suporte e força necessárias ao longo da minha graduação.

Aos meus amigos que formei ao longo da graduação, que fizeram todo o processo se tornar mais leve, me orientando e apoiando.

E por fim, a todos que contribuíram de alguma forma para minha formação pessoal e profissional.

A todos, o meu muito obrigado,

Carlos Eduardo de Sousa Pinto

RESUMO

0 emprego de estacas do tipo hélice contínua monitorada tem sido progressivamente adotado no Brasil, particularmente em Fortaleza, Ceará, desde o início do século XXI. Embora existam vários métodos semiempíricos para determinar a estimativa da capacidade de carga de estacas do tipo hélice contínua monitorada, é necessário avaliá-los em relação à sua proximidade ao valor da prova de carga. A estimativa da capacidade de carga de fundações por estacas baseia-se em dois requisitos: a geometria da fundação e as características do solo em que está assentada. Neste trabalho, foram utilizados dados de sondagens SPT fornecidos por Dias (2016) e Scipião (2019) em cinco obras localizadas no município de Fortaleza, no estado do Ceará. Essas obras estão distribuídas nos bairros Luciano Cavalcante, Messejana, Jacarecanga e Joaquim Távora. Dessa forma, este estudo tem como objetivo identificar obras no município de Fortaleza que realizaram provas de carga estáticas em estacas do tipo hélice contínua monitorada. Buscando assim, comparar os resultados obtidos nas estimativas de capacidade de carga pelos métodos de Aoki e Velloso (1975), Aoki e Velloso (1975) modificado por Laprovitera (1978), Benegas (1983), Décourt e Quaresma (1978), e Antunes e Cabral (2000) com os resultados interpretados a partir dos resultados de prova de carga estática. A análise estatística das estimativas realizadas pelos métodos semiempíricos foi conduzida por meio do Ranking Index (RI) modificado. Com base nessa análise, os métodos de Aoki e Velloso (1975) modificados por Laprovitera (1978), Benegas (1983), e Antunes e Cabral (2000) com coeficientes máximos destacaram-se como os mais assertivos na previsão da capacidade de carga das estacas avaliadas neste estudo, dadas as limitações nos dados de sondagens SPT, provas de carga e a quantidade reduzida de estacas. Em geral, os quatro métodos abordados neste trabalho apresentam estimativas conservadoras para a maioria das estacas analisadas, considerando as premissas adotadas para chegar a esses resultados.

ABSTRACT

The use of monitored continuous flight auger piles has been increasingly implemented in Brazil, specifically in Fortaleza, CE, since the mid-1980s, as per Queiroz's studies (2019). Although there are several semi-empirical methods to determine the estimated load-bearing capacity of monitored continuous flight auger piles, it is necessary to evaluate them in relation to their proximity to the load test value. Geotechnical factors of the soil, such as its heterogeneity, composition, and both lateral and tip frictional capacity, groundwater level, and load dissipation between the sides and the tip of the piles directly influence these estimates. For this, SPT (Standard Penetration Test) data provided by Dias (2016) and Scipião (2019) were used in five construction projects in the municipality of Fortaleza - CE, distributed in the neighborhoods of Luciano Cavalcante, Messejana, Jacarecanga, and Joaquim Távora. Thus, this study aims to identify projects in the municipality of Fortaleza - CE that conducted static load tests and extrapolations of the rupture load, according to Décourt (1996), and compare the results obtained in load-bearing capacity estimates using the methods of Aoki and Velloso (1975), Aoki and Velloso (1975) modified by Laprovitera (1978) and Benegas (1983), Décourt and Quaresma (1978), and Antunes and Cabral (2000), using maximum and minimum coefficients to classify them through the Ranking Index (RI) taking into account the first two parameters, R1 and R2, and generating the modified RI. Based on this analysis, the methods of Aoki and Velloso (1975) modified by Laprovitera (1978) and Benegas (1983), and Antunes and Cabral (2000) with maximum coefficients proved to be the most accurate methods in predicting the load-bearing capacity of piles, given the limited conditions of SPT data, load tests, and the reduced quantity of piles. Overall, the four methods discussed in this study present similar characteristics, providing conservatively semi-empirical estimated results for the vast majority of the analyzed piles, taking into account the considerations adopted to arrive at these results.

SUMÁRIO

1.	INTRODUÇÃO	9
1.1	Justificativa	9
1.2	Objetivo geral	11
1.3	Objetivos específicos	11
1.4	Estrutura do trabalho	12
2	REFERENCIAL TEÓRICO	13
2.1	Histórico do uso de fundações profundas do tipo estaca	13
2.2	Estaca hélice contínua monitorada	14
2.3	Ensaio de Sondagem de Simples Reconhecimento (SPT)	19
2.3.1	Histórico do SPT	19
2.3.2	Ensaio de Sondagem de Simples Reconhecimento (SPT)	19
2.4	Prova de carga estática em estaca	23
2.5	Métodos semiempíricos de capacidade de carga de estaca	29
2.5.1	Método Aoki e Velloso (1975)	30
2.5.2	Método de Aoki e Velloso (1975) - Modificado por Laprovitera (1988) e Benegas (1993)	32
2.5.3	Método Décourt e Quaresma (1978)	33
2.5.4	Método Antunes e Cabral (2000)	36
2.6	Análise estatística - RI	36
3	ESTUDO DE CASO	38
3.1	Metodologia	38
3.2	Áreas estudadas	39
3.3	Investigações Geotécnicas - SPT	41
3.3.1	SPT	42
3.4	Provas de Carga	49

4.0	RESULTADOS E DISCUSSÕES	56
4.1	Estimativas de capacidade de carga	56
4.2	Interpretação das provas de carga	111
5.0	CONCLUSÕES	130
	REFERÊNCIAS	132

1. INTRODUÇÃO

Segundo Queiroz (2019), as fundações do tipo hélice contínua foram desenvolvidas por volta da metade do século XX nos Estados Unidos e introduzidas no Brasil, cerca de 40 anos mais tarde, em 1987, tendo sua execução auxiliada por guindastes de esteiras.

Mascagna Costa, Quaresma e Florian (2021) afirmam que o uso de estacas hélice está em constante crescimento no Brasil, principalmente por causa dos avanços tecnológicos no processo de execução, apresentando vantagens em relação aos outros tipos de fundações difundidas no país. Além disso, a execução desse tipo de estrutura não gera impactos nas edificações vizinhas, pois não causa desconforto sonoro nem vibrações e apresenta elevada produtividade, chegando a 200 metros por dia.

No Ceará, o uso desse tipo de elemento de fundação vem ganhando espaço na construção civil e é amplamente utilizado em obras de edifícios de médio e grande porte.

Com seu uso crescente em todas as regiões do país, gera-se a motivação da pesquisa para enfatizar a importância da avaliação de metodologias semiempíricas utilizadas em projetos de fundações que empregam fundações do tipo hélice contínua monitorada. Buscando assim, determinar de forma mais assertiva o comportamento das fundações profundas em relação a capacidade de carga e distribuição de tensões.

1.1 Justificativa

Com o avanço da tecnologia e a magnitude dos projetos de arquitetura em todo o país, surge a necessidade de os projetos de fundações apresentarem métodos eficientes e com o melhor custo-benefício, de acordo com as condições da região onde será localizada a edificação. A partir disso, os profissionais atuantes em projetos de estruturas de fundações estão constantemente em busca de soluções estruturais que demonstrem bom desempenho técnico e melhor custo de implantação. De acordo com Velloso e Lopes (2010), as estacas do tipo hélice contínua foram introduzidas no Brasil em meados da década de 1980 e, com o passar do tempo, vem sendo usadas para atender diversas necessidades dos clientes e oferecendo elevada produtividade e baixo nível de ruídos e vibrações, diferentemente de outros métodos.

Em Fortaleza, nota-se um rápido e elevado crescimento no uso de estacas do tipo hélice contínua monitorada, para atender às solicitações do projeto.

No entanto, para ser possível empregar esse tipo de fundação em projeto, é de extrema importância realizar investigações geotécnicas para determinar as propriedades do solo ao longo de sua profundidade.

De acordo com Rocha (2013), o principal estudo realizado para avaliar a possibilidade do uso de estacas hélice contínua monitorada (HCM) é o ensaio SPT (Standard Penetration Test), que se trata de um dos ensaios mais comumente utilizados em investigações geotécnicas em obras residenciais. O ensaio permite a identificação da compacidade e da consistência de solos granulares e solos coesivos, bem como o índice de resistência à penetração do solo (N_{SPT}).

Após coleta dos resultados oferecidos pelas amostras, é necessário interpretá-los e analisá-los para realizar o devido dimensionamento desses elementos de fundação.

Porém, são necessários ajustes, por coeficientes, com o auxílio da estatística, para determinar o melhor método de estimar a capacidade de carga das fundações do tipo estaca hélice contínua e, posteriormente, o comprimento total ideal para cada um dos elementos solicitados no projeto de fundações.

Diante disso, observa-se a necessidade de avaliar a assertividade de metodologias semiempíricas de capacidade de carga aplicadas a estacas do tipo hélice contínua monitorada, de modo que o dimensionamento realizado durante a etapa de concepção do projetos de fundações apresentem resultados mais precisos e confiáveis para estimar a capacidade de carga das estacas do tipo HCM (hélice contínua monitorada) para o município de Fortaleza.

1.2 Objetivo geral

Este trabalho tem como objetivo geral realizar uma investigação da eficiência de métodos semiempíricos para a estimativa da capacidade de carga em fundações de estacas hélice contínua, utilizando dados de provas de carga em obras localizadas na cidade de Fortaleza, CE.

1.3 Objetivos específicos

Os objetivos específicos são:

- Estudar os métodos de Aoki e Velloso (1975), Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983), Décourt e Quaresma (1978) e Antunes e Cabral (2000) para realização da estimativa de capacidade da prova de carga
- Coletar dados de provas de carga em estacas hélice contínua nas obras selecionadas, de acordo com as normas técnicas vigentes.
- Interpretar sondagens SPT e as características dos perfis estratigráficos nas obras selecionadas.
- Calcular a estimativa da capacidade de carga para estacas locadas em solos da cidade de Fortaleza - Ce
- Aplicar diferentes métodos semiempíricos para a estimativa de capacidade de carga nas estacas ensaiadas.
- Comparar os resultados obtidos pelos métodos semiempíricos com os valores medidos nas provas de carga.
- Avaliar a eficiência de cada método semiempírico na previsão da capacidade de carga das estacas hélice contínua monitoradas.

1.4 Estrutura do trabalho

Este trabalho acadêmico está estruturado, inicialmente, em cinco capítulos. O presente capítulo apresenta os seguintes pontos: introdução, motivação da pesquisa, descrição dos objetivos gerais e específicos e a organização do trabalho.

No segundo capítulo, apresenta-se o referencial teórico, que traz o histórico de uso do tipo fundação abordada, bem como suas técnicas executivas, o ensaio de SPT, necessário a elaboração do projeto e a prova de carga estática em estacas, por métodos semiempíricos e análises estatísticas.

O terceiro capítulo traz um estudo de caso com foco no uso de fundações do tipo estaca HCM (hélice contínua monitorada) na cidade de Fortaleza, CE.

O quarto capítulo mostra os resultados obtidos a partir da estimativa de capacidade de carga de métodos semiempíricos a partir do ensaio SPT para estacas HCM.

O quinto capítulo traz as conclusões a partir dos resultados da estimativa de cargas por métodos semiempíricos e as recomendações de trabalhos futuros relacionados a este tema.

2. REFERENCIAL TEÓRICO

Este capítulo traz um contexto histórico da estaca hélice contínua monitorada, bem como do seu processo executivo, além de abordar aspectos relativos a sondagens do tipo SPT, provas de carga, métodos semiempíricos de capacidade de carga e metodologia estatística para avaliação da eficiência dos métodos de estimativa de capacidade de carga.

2.1 Histórico do uso de fundações profundas do tipo estaca

Fundação é a parte da estrutura que transmite ao solo ou rocha, as cargas provenientes da superestrutura e do seu peso próprio (SCHULZE, 2013).

Dados históricos apontam que o uso de estacas foi descrito, pela primeira vez, por volta do século quatro antes de Cristo pelo historiador grego Herodotus (FLEMING *et al*; 1992 apud SCHULZE, 2013) que evidenciou habitações de tribos africanas construídas de forma elevada, construídas sobre estacas cravadas no leito dos rios da região.

Posteriormente, diversos outros relatos e registros escritos anotam que as civilizações de diversos locais utilizavam estruturas, por vezes, de madeira para construir seus abrigos elevados, oferecendo proteção contra o ataque de animais, de outros seres humanos e de intempéries do tempo, como elevação do nível dos rios próximos a essas habitações, por exemplo. Para isso, estudos de suporte de carga eram realizados para definir a quantidade de elementos que seriam necessários para suportar e atender suas necessidades e sua instalação era feita por cravamento, aplicando uma determinada quantidade de golpes no elemento.

Com o passar dos anos e os avanços nas tecnologias de fabricação de materiais alternativos, como o cimento Portland e estruturas metálicas, no século XIX, bem como o descobrimento do concreto armado pelos franceses Coignet e Hennebique possibilitaram novos métodos para a construção desses elementos, conforme afirma SCHULZE (2013).

A partir disso, com o uso desses materiais, foi possível aumentar a magnitude dos projetos, suporte de capacidade de carga, utilizar-se de técnicas aprimoradas e formas de execução mais rápidas e eficientes.

Uma das técnicas que permitiu essa melhoria foi a elaboração e criação de equipamentos mecânicos operados pelos profissionais, que, agora, podiam fazer as escavações solicitadas sem necessidade do operário descer ao longo das perfurações no solo.

Assim como ressalta Schulze (2013), no início, esses elementos continuavam sendo utilizados em fundações e, agora, para proporcionar um reforço em solos com menor capacidade de carga, a tração e a compressão, fazendo com que eles possam receber e dissipar cargas de modo a exercer seu papel principal, o de sustentar a edificação. Isso torna-se possível devido à geometria das estacas hélices contínuas que proporcionam capacidade de dissipar as cargas a elas impostas por cima para toda a sua superfície, com exceção da face superior.

As estacas hélice contínua (*"continuous flight auger"*), introduzidas no Brasil em 1987 e difundidas mais amplamente em 1993 (CAPUTO *et al.*, 1997). Nos últimos anos, a engenharia geotécnica experimentou um grande avanço nos processos de execução de fundações profundas, devido às exigências cada vez maiores de cargas a serem transferidas ao solo (ALBUQUERQUE, 2001).

2.2 Estaca hélice contínua monitorada

Tavares (2009) define que a estaca hélice contínua é um elemento de concreto moldada "*in loco*" que é executada em três etapas: perfuração, concretagem simultânea à extração do trado e instalação da armadura de aço.

O uso desse tipo de estaca como solução para estruturas de fundações de edifícios permite bastante versatilidade e adaptabilidade às exigências do engenheiro calculista, além de proporcionar elevada resistência na sustentação da estrutura e não causar desconforto aos moradores vizinhos, visto que esses elementos não causam vibração no terreno ao serem executadas (ALBUQUERQUE; GARCIA, 2020). A ABNT NBR 6122 (2022) define a estaca hélice contínua monitorada como uma estaca de concreto *in loco*, executada a partir da introdução de um trado helicoidal contínuo de diâmetro constante, por rotação, até a cota prevista em projeto, com a perfuratriz estando devidamente nivelada, centralizada e verticalmente alinhada com a estaca.

A injeção de concreto é feita pela haste central do trado simultaneamente à sua retirada. A armadura é sempre colocada após a concretagem da estaca (NBR 6122, 2022).

O equipamento, por sua vez, deverá cumprir os requisitos mínimos estabelecidos pelo projetista, de modo a garantir que seja atingida a profundidade de necessária e com torque e força de arranque compatíveis com o diâmetro da estaca e a resistência do solo a ser furado.

Durante o processo de escavação, a ABNT NBR 6122 (2022) reforça a obrigatoriedade do monitoramento eletrônico até atingir a cota de projeto, sendo registrada a profundidade, a velocidade de rotação do trado, a velocidade do avanço e a pressão do torque.

A ABNT NBR 6122 (2022) complementa que deve-se garantir que a tubulação esteja totalmente cheia de concreto na primeira estaca a ser trabalhada no dia ou após a limpeza do equipamento.

Ao iniciar a concretagem, deve existir perfeita coordenação entre os operadores do equipamento da hélice contínua e do responsável pela bomba do concreto que opera no cocho (NBR 6122, 2022). Com o sinal sonoro acionado pelo operador do equipamento, o operador do cocho inicia o lançamento do concreto.

Posteriormente a concretagem, a armadura de aço em forma de gaiola deve ser inserida imediatamente e pode ter a descida auxiliada por um peso ou vibrador. Ao longo da armadura, devem ser colocados os espaçadores, ou centralizadores, que garantiram a verticalidade da armadura e que ela tenha o cobrimento de concreto necessário calculado pelo projetista.

A ABNT NBR 6122 (2022) orienta que não devem ser executadas estacas com espaçamento inferior a cinco vezes o diâmetro, ou a quantidade determinada em projeto, em um período inferior a 12 horas.

Devido à velocidade no processo de execução, é ideal que a produção do concreto seja realizada em locais próximos à obra, pois, assim como para outros

elementos de concreto armado, só é possível parar a concretagem após o término total da estrutura.

A Figura 1 abaixo ilustra bem o processo descrito acima para execução de uma fundação do tipo estaca profunda.

Figura 1 - Etapas de execução de uma estaca hélice contínua

Fonte: Rei hélice contínua, 2023.

Diversos autores e a NBR 6122 (ABNT, 2022) orientam do uso de discos espaçadores para que a armadura possa chegar até o final da escavação e garantir, também, que o cobrimento de concreto da armadura de aço será seguido, conforme as Figuras 2 e 3.

Fonte: Albuquerque e Garcia (2020) Figura 3 - Imagens do espaçador na armadura

Fonte: Albuquerque e Garcia (2020)

Na etapa de concretagem, o monitoramento eletrônico deve ser capaz de registrar a velocidade de subida do trado, o que afetará, diretamente, na distribuição do concreto ao longo do elemento.

As estacas do tipo hélice contínua foram sendo aprimoradas ao longo dos anos em que vem sendo utilizadas em fundações e reforços de solos e, em geral, apresentam concentração de armadura maior que os demais modelos. De acordo com Albuquerque e Garcia (2020), com o dimensionamento realizado para a elaboração do projeto estrutural, as estacas, como são armadas, podem trabalhar resistindo aos esforços de compressão.

Com os equipamentos usados nas construções civis atuais, é possível atender a diversos tamanhos e bitolas de estacas, visto que as seções de perfuração são realizadas em módulos, um tubo é introduzido no solo e pressionado para baixo ao passo que a hélice rotativa faz a remoção do material no interior do tubo com o auxílio da água até atingir o comprimento desejado.

Segundo a NBR 6122 (ABNT, 2022) o consumo mínimo de cimento na mistura de concreto tem é de 400kg/m³ para concretos com fck de 30MPa e fator água/cimento menor ou igual a a 0,6, e o mesmo volume de cimento e fator água/cimento menor ou igual a 0,45 para concretos com fck de 40MPa.

Após a estaca estar completamente preenchida de concreto, a armadura de aço com os espaçadores é instalada de cima para baixo até atingir o limite inferior da escavação.

Durante todo o processo de execução desses elementos de fundação, a NBR 6122 (ABNT, 2022), expressa que as estacas devem ser monitoradas eletronicamente a partir de sensores instalados na perfuratriz, registrando os seguintes parâmetros: nivelamento do equipamento e do prumo do trado, pressão no torque, velocidade de avanço do trado, rotação do trado, pressão de concreto durante a concretagem, sobreconsumo de concreto e velocidade de extração do trado.

Pelo menos 1% das estacas, e no mínimo uma por obra, deve ser exposta abaixo da cota de arrasamento e, se possível, até o nível d'água, para verificação da sua integridade e qualidade do fuste de acordo com a NBR 6122 (ABNT, 2022).

A norma também recomenda que, a partir dos dados gerados, seja preenchido um boletim de controle de execução diariamente para cada estada, devendo constar, dentre outras informações, identificação geral da obra, os operários responsáveis, características do equipamento, localização, cota e inclinação da estaca, comprimento executado e comprimento concretado, data e horário de início e fim da escavação e da concretagem da estaca, eventuais desvios, se houverem, volume do concreto programado e real por estaca, com base no

volume do caminhão betoneira e quaisquer outras informações que o responsável julgar necessária ou relevante para este documento, bem como sua assinatura.

2.3 Ensaio de Standard Penetration Test (SPT)

2.3.1 Histórico do SPT

Odebrecht (2003) relata que o primeiro ensaio de SPT é do início dos anos de 1900, quando o Coronel Charles R. Grow desenvolveu um amostrador de 25mm de diâmetro que foi injetado no solo com a ajuda de um peso. Com esse ensaio, foi possível coletar amostras chamadas "*Dry Sample*", o que possibilitou um melhor reconhecimento da composição do solo do local e suas propriedades.

No Brasil, o autor relata que esses estudos iniciaram na década de 1930, junto a criação da Seção de Estruturas e Fundações do IPT e a volta do Eng. Odair Grillo, graduado na universidade de Harvard, em 1936, e foi o pioneiro nesses ensaios no país, que, até então, só fazia análises táteis-visuais do solo.

Ainda de acordo com Odebrecht (2003), com a evolução dos métodos empregados para fazer os estudos de solo no Brasil resultou proposta de Método de Execução de "*Standard Penetration Test*" dos Solos no 5º Congresso Brasileiro de Mecânica dos Solos.

2.3.2 Ensaio Standard Penetration Test (SPT)

Rocha (2013) define o SPT (*"Standard Penetration Test"*, em inglês ou Sondagem de Simples Reconhecimento, em português) como o ensaio mais utilizado na investigação geotécnica no Brasil. Ele permite a identificação da consistência de solos granulares e solos coesivos.

O ensaio é praticado conforme orientações da NBR 6484 (ABNT, 2020), que orienta todas as etapas do processo.

Albuquerque e Garcia (2020) anotam que a perfuração é realizada com o auxílio de trados mecânicos, que podem variar conforme solo alagado ou seco, conforme Figura 4, e as amostras são coletadas a cada metro de profundidade, através do amostrador padrão do tipo Raymond, que apresenta diâmetro externo de 50,80mm e 34,93mm de diâmetro interno. O amostrador é cravado no fundo da escavação, usando um martelo de 65kg que é lançado livremente de uma altura de 75cm, repetindo esse processo em três seções iguais de 15cm cada. O valor obtido, N_{SPT} é o número de golpes necessários para fazer o amostrador-padrão penetrar 30cm, após ser inicialmente cravado 15cm.

A partir disso, Albuquerque e Garcia (2020) explicam que essa quantidade de golpes resultante permite identificar a resistência mecânica do solo.

Figura 4 - Tipos de trados utilizados no ensaio

Fonte: Albuquerque e Garcia (2020)

Nas Figuras 5 e 6, são mostrados os equipamentos utilizados para o ensaio e a forma como é medido o N_{SPT} , respectivamente.

Figura 5 - Equipamentos utilizados no ensaio

Fonte: Albuquerque e Garcia (2020)

Figura 6 - Medida do N_{SPT}

Fonte: Albuquerque e Garcia (2020)

A norma NBR 6484 (ABNT, 2020) apresenta diversas tabelas com dados e suas representações com relação do número de golpes nos tipos de solos, conforme as Tabelas 1 e 2.

N _{SPT}	Argila e siltes argilosos
Menor ou igual a 2	Muito mole
3 a 5	Mole
6 a 10	Média(o)
11 a 19	Rija(o)
20 a 30	Muito rija(o)
Maior que 30	Dura(o)

Tabela 1 - N_{SPT} para solos argilosos

Fonte: NBR 6484 (ABNT, 2020) (adaptado pelo autor)

Tabela 2 - N_{SPT} para solos arenosos

N _{SPT}	Areia e siltes arenosos
Menor ou igual a 4	Fofa(o)
5 a 8	Pouco compacta(o)
9 a 18	Medianamente compacta(o)
19 a 40	Compacta(o)
Maior que 40	Muito compacta(o)

Fonte: NBR 6484 (ABNT, 2020) (adaptado pelo autor)

Para garantir dados precisos, a norma recomenda no item 5.2.3.16 que as amostras recolhidas devam ser imediatamente armazenadas em recipientes herméticos, explicação, com dimensões apropriadas com espaço suficiente para receber os dados, como: número do trabalho, local da obra, número da soldagem, número e profundidade da amostra e o número de golpes ligados às respectivas penetrações dos amostradores.

Albuquerque e Garcia (2020) complementam que, na década de 1980, o professor Ranzini propôs a realização, durante o ensaio, da medida do torque, denominada SPT-T, que consiste na rotação de um conjunto haste-amostrador com o auxílio de um torquímetro. Durante a rotação, é possível identificar o torque máximo necessário, após o rompimento da adesão entre o solo e o amostrador, obtendo o atrito lateral do amostrador-solo, e, ao continuar o processo, a obtenção do torque residual.

Apesar de todo esse controle, os resultados obtidos por meio dessas sondagens apresentam pequenas variabilidades em relação às perdas de energia, atrito nas cordas e roldanas, mau contato das superfícies, desalinhamento entre as superfícies, reflexões nas luvas (COSTA, G. F. et al; 2022).

A NBR 8036 (ABNT, 1983) complementa que o número de sondagens dependem do tipo da estrutura, localização e condições geotécnicas do subsolo, mas que deve ser o suficiente para fornecer o melhor quadro possível para variação das camadas do subsolo do local de estudos.

A NBR 8036 (ABNT, 1983) orienta que o ensaio deve ser realizado para cada 200m² de projeção em planta do imóvel até 1.200m² de área. Entre 1.200m² e 2.400m², pelo menos uma sondagem a cada 400m² e acima de 2.400m², o número de sondagens deve ser fixado de acordo com o plano particular da construção. Em quaisquer casos, no mínimo duas sondagens para até 200m² e três para áreas entre 200m² e 400m². Em caso de ausência de planta baixa, uma sondagem com no máximo 100m de distância máxima e, no mínimo, três sondagens.

Além disso, a norma também orienta que as sondagens devem ser distribuídas igualmente em toda a área e, quando o número de sondagens for maior que três, elas não devem ser distribuídas ao longo do mesmo alinhamento.

2.4 Prova de carga estática em estaca

As provas de cargas são os melhores ensaios para a determinação do comportamento de fundações profundas sob carga, sendo os únicos realmente confiáveis (MILITITSKY, 1991). O autor ainda complementa que estas provas de carga podem prover dados para o projeto, avaliar as fundações executadas ou ajudar no estudo das características de comportamento do conjunto solo-estaca.

A norma NBR 16903 (ABNT, 2020) define que a prova de carga estática consiste em aplicar esforços à fundação profunda e registrar os deslocamentos correspondentes. Podem ser aplicados esforços de tração, compressão ou flexocompressão, horizontal, verticalmente ou de forma inclinada.

Para esse teste, são definidos alguns equipamentos específicos, como os medidores de força, compostos pelo conjunto hidráulico, que por sua vez é

composto por manômetro com escala adequada ao carregamento, cilindro e bomba hidráulicos, devidamente calibrados de acordo com a NBR 8197 (ABNT, 2021); célula de carga, que trata-se de um transdutor de força que pode ser resistivo, indutivo ou de corda vibrante, que converte a força aplicada em um sinal elétrico e é registrado por equipamento específico; medidor de deslocamento, deflectômetro, que são utilizados para medir os deslocamentos do elemento de fundação durante a aplicação da carga, e sistema de aplicação de carga, que é constituído por um ou mais cilindros hidráulicos alimentados por bombas elétricas ou manuais, capazes de suportar, no mínimo, 10% a mais do que a carga máxima prevista para o ensaio.

Para realizar esse teste, a norma preconiza que é ideal já ter os resultados do ensaio SPT, com ênfase na resistência à penetração obtida, além de informações mínimas, como: locação e detalhamento das estacas; esquema de montagem da prova de carga, com posicionamento do sistema de reação e suas referências; carga de trabalho e carga máxima ensaiada. especificações quanto ao tipo de carregamento; bem como o detalhamento das estacas, dos blocos de coroamento e o posicionamento do sistema de ancoragem.

Para a montagem do ensaio, todos os aparelhos de medição que compõem o teste deve estar devidamente abrigados, para o caso de intempéries, dentro de um raio de trinta metros da estaca-teste e não devem haver vibrações que possam interferir nas leituras por toda a duração do ensaio.

Entre a instalação da estaca e o início do carregamento da prova de carga, deve-se aguardar um tempo mínimo de três dias, para solos não coesivos e dez dias, para solos coesivos. Caso a estaca seja moldada in loco, como a estaca hélice contínua, deve-se, então, assegurar um período mínimo para que ela possa suportar a carga máxima do ensaio.

A norma também define o sistema de reação para provas de carga à compressão, que podem ser por: plataforma cargueira, plataforma sustentada por cavaletes com o objetivo de assegurar as condições adequadas de segurança e que a esteja carregada com material cuja massa total seja, pelo menos, 20% maior que a carga máxima prevista para o teste; por elementos de tração, constituídos por estacas ou tirantes ancorados no terreno; pela própria estrutura da edificação, devidamente verificada para todas as solicitações para realização do teste.

Por último, deve-se ter vigas, de madeira ou metálica, de referência associadas aos deflectômetros com o objetivo de monitorar o movimento descendente do elemento de fundação.

A Figura 7 exemplifica os elementos no sistema de reação do tipo cargueiro.

Figura 7 - Modelo do sistema de reação cargueiro

Fonte: Neves et al. (2004)

As Figuras 8 e 9 exemplificam sistema de provas de carga à compressão realizada com o uso de tirantes de forma esquemática e de forma prática.

Figura 8 - Sistema de prova de carga à compressão com tirantes

Fonte: Albuquerque e Garcia (2020)

Figura 9 - Sistema de prova de carga à compressão com tirantes montado em obra

Fonte: Imagem da internet (2023). Disponível em:

https://assets.maiscontroleerp.com.br/wp-content/uploads/2018/05/PROVA-DE-CARGA-ESTATICA -EM-ESTACAS.jpg

O carregamento, na execução da prova de carga, deverá atender os fatores de segurança previstos na norma NBR 6122 (ABNT, 2019) e podem ser de

quatro tipos: lento (PCE), rápido (PCR), misto (lento seguido de rápido) (PCM) ou cíclico, lento (PCCL) ou rápido (PCCR).

Albuquerque e Garcia (2020), complementam que os resultados da prova de carga são de extrema importância para a elaboração de um projeto geotécnico confiável. Com o auxílio da incorporação de extensômetros elétricos, permite-se obter informações sobre a transferência de carga ao longo do comprimento de uma estaca nas diferentes camadas do solo e as contribuições na resistência lateral e de ponta, auxiliando na escolha dos critérios de ruptura, com gráficos conforme o apresentado na Figura 9.

Fonte: ALBUQUERQUE & GARCIA (2020)

O resultado de uma prova de carga sobre uma estaca isolada é interpretado através da curva carga vs recalque (MELO, 2009) e é um dos principais aspectos na elaboração do projeto de fundações.

Melo (2009) acrescenta que o conceito de rigidez apresentado por Décourt (1996) conduz a resultados da carga limite através do Gráfico de Rigidez. Ele permite que o analista visualize, com antecedência, através da curva carga vs recalque, o comportamento da estaca em relação a transferência de carga pela ponta e pelo fuste.

Inicialmente, a curva carga vs recalque oferece dados relevantes para a interpretação do Gráfico de Rigidez. Conforme ilustrado na Figura 10, é gerada uma reta entre o ponto de regressão escolhido e a carga de ruptura convencional (Quc). A intersecção desta reta com o eixo das abscissas indica o limite inferior do domínio do atrito lateral (Qsi) (MELO, 2009).

Fonte: Melo (2009)

A autora completa que, para determinar o ponto de regressão, são estabelecidas correlações lineares entre Log(Q) e Log(r) e estes coeficientes são elevados ao quadrado para obter o R². A partir dele e dos dados de carga e recalque, é possível identificar uma alteração no comportamento da curva, esse ponto é o de regressão linear a ser adotado e, na maioria das vezes, este ponto apresenta recalque equivalente a 2% do diâmetro da estaca, acrescenta Melo (2009).

Convencionalmente, a carga da ruptura é determinada através da equação da curva carga vs recalque e segue a equação 2.1, apresentando carga relativa a um recalque de 10% do diâmetro, onde Φ é o diâmetro, a, a previsão da curva (Log(Q) vs Log(r)) no ponto de regressão e b, a inclinação da mesma curva no ponto de regressão.

$$Ouc = 10^{Log(\Phi/10).(b-a)}$$
 (Eq. 2.1)

Considerando a rigidez (R_{IG}) como a razão entre a carga aplicada (Q) e o recalque (r), tem-se que Quc é o limite de R_{IG} quando r tende ao infinito.

A ruptura física, por sua vez, é considerada como a rigidez de um elemento isolado de fundação nula, admitindo deformação infinita, ou seja, R_{IG} é igual a razão Q dividido por r, tendendo a zero.

De posse desses valores de rigidez (R_{IG}) e dos valores de carga (Q), é gerado o gráfico com R_{IG} nas ordenadas e Q nas abscissas, para que possa ser determinada a carga que leva a rigidez nula. Porém, rigidez nula implica em deformação infinita, fazendo com que ela não seja atingida na prática. A partir disso, usa-se o gráfico de rigidez para determinar a ruptura de modo convencional.

2.5 Métodos semiempíricos de capacidade de carga de estacas

Albuquerque (2020) traz que, no Brasil, em geral, os métodos de capacidade de carga são concebidos a partir dos valores obtidos no ensaio de SPT, visto que essa é a técnica mais utilizada no país. Tradicionalmente, são empregados os métodos de: Alonso (1996), Aoki e Velloso (1975), Décourt e Quaresma (1978), Antunes e Cabral (2000), dentre outros.

Velloso e Lopes (2010) acrescentam que, nos métodos estáticos, a capacidade de carga é calculada por fórmulas que estudam a estaca mobilizando toda a resistência ao cisalhamento estático do solo, obtidas em ensaio de laboratório ou in situ.

Para eles, os métodos estáticos se separam em: racionais ou teóricos, que utilizam soluções teóricas de capacidade de carga e parâmetros do solo, ou semiempíricos, que se baseiam em ensaios in situ de penetração (CPT ou SPT).

Os métodos empíricos servem apenas de estimativa, com pouca precisão, da capacidade de carga de uma estaca, já os métodos estáticos, analisam o equilíbrio entre a carga aplicada, o peso próprio da estaca e a resistência oferecida pelo solo, conforme a equação 2.2 e a Figura 11.

Qult + W = Qp, ult + Ql, ult (Eq. 2.2)

Onde, Qult representa a capacidade de carga total da estaca; W, o peso próprio da estaca; Qp,ult, a capacidade de carga da ponta e Ql,ult, a capacidade de carga do fuste.

Figura 11 - Representação do equilíbrio das cargas do solo

Fonte: Velloso e Lopes (2010)

2.5.1 Método Aoki e Velloso (1975)

Velloso e Lopes (2010) afirmam que o método de Aoki e Velloso (1975) foi desenvolvido a partir de um estudo comparativo entre resultados de provas de carga em estacas e de SPT, podendo ser utilizado tanto para dados do SPT como do CPT.

A primeira expressão da capacidade de carga foi descrita conforme a equação 2.3, relacionando a resistência de ponta e o atrito lateral da estaca com resultados do CPT, onde F1 e F2 são fatores de escala e execução.

 $Qult = Ab. qp, ult + U. \Sigma \tau l, ult. \Delta l = Ab. qcone/F1 + U. \Sigma \tau cone/F2. \Delta l$ (Eq. 2.3) ac = k. N(Eq. 2.4)

$$\tau c = \alpha x q c \rightarrow \tau c = \alpha . k. N$$
 (Eq. 2.5)

Onde, Qult é a capacidade de carga total da estaca; W, o peso próprio da estaca; Qp,ult, a capacidade de carga da ponta e QI,ult, a capacidade de carga do fuste.

A partir desses dados, obtém-se a equação 2.6: $Qult = A. qp, ult + U. \sum \tau l, ult. \Delta l = A. k. N/F1 + U. \sum \alpha. k. N/F2. \Delta l$ (Eq. 2.6) Os valores de k e alpha (α) são provenientes da Tabela 3 e os valores de F1 e de F2 foram obtidos a partir da retroanálise de resultados de provas de carga em estacas e contidos na Tabela 4. Onde k representa a relação entre o N_{SPT} e qc obtidos em ensaios de SPT e CPT em função do tipo de solo; alpha (α), a relação entre o fc e qc, obtidos em ensaio CPT em função do tipo de solo.

Tipo de Solo	k (KPa)	α (%)
Areia	600	1,4
Areia siltosa	530	1,9
Areia siltoargilosa	530	2,4
Areia argilossiltosa	530	2,8
Areia argilosa	530	3,0
Silte arenoso	480	3,0
Silte arenoargiloso	380	3,0
Silte	480	3,0
Silte argiloarenoso	380	3,0
Silte argiloso	300	3,4
Argila arenosa	480	4,0
Argila arenossiltosa	300	4,5
Argila siltoarenosa	300	5,0
Argila siltosa	250	5,5
Argila	250	6,0

Tabela 3 - Valores de k e a por Aoki-Velloso

Fonte: Aoki-Velloso (1975) adaptada pelo autor

Com a equação 2.6, sendo conhecidas todas as variáveis obtidas pelo SPT e a Tabela 3, é possível calcular os valores de F1 e F2. Com as limitações da época, ausência de provas de carga instrumentadas, não era possível obter os dois valores, sendo assim, adotaram que F1 = 2*F2, organizaram e apresentaram esses dados na Tabela 4, onde F1 representa o coeficiente de transformação utilizado para o cálculo da carga de ponta e F2, da resistência lateral.

Tipo de Estaca	F1	F2
Franki	2,50	5,00
Metálica	1,75	3,50
Pré-moldada de concreto	1,75	3,50
Escavada	3,00	6,00

Tabela 4 - Valores de F1 e F2 por Aoki-Velloso

Fonte: Velloso e Lopes (2010)

2.5.2 Método de Aoki e Velloso (1975) - Modificado por Laprovitera (1988) e Benegas (1993)

Velloso e Lopes (2010) acrescentam que Laprovitera (1988) e Benegas (1993), fizeram avaliações do método de Aoki-Velloso. Em suas análises, os valores de k e a utilizados foram os modificados, a partir do método de Aoki-Velloso, por Danziger (1982).

Sendo assim, a Tabela 5 foi desenvolvida para apresentar os valores de k e o utilizados por Laprovitera e Benegas (1975).

Tipo de Solo	k (KPa)	α (%)
Areia	1000	1,4
Areia siltosa	800	1,9
Areia siltoargilosa	700	2,4
Areia argilossiltosa	500	2,8
Areia argilosa	600	3,0
Silte arenoso	550	3,0
Silte arenoargiloso	450	3,0
Silte	400	3,0
Silte argiloarenoso	250	3,0
Silte argiloso	230	3,4
Argila arenosa	350	4,0
Argila arenossiltosa	300	4,5
Argila siltoarenosa	330	5,0
Argila siltosa	220	5,5
Argila	200	6,0

Tabela 5 - Valores de k e o por Laprovitera e Benegas

Fonte: Aoki-Velloso (1975) modificado por Laprovitera e

Benegas (1975) adaptada pelo autor

Além disso, o Velloso e Lopes (2010) complementam que, a relação de F2 = 2*F1 não foi mantida, os autores utilizaram outras relações, de forma a obter uma melhor previsão, organizando os valores adotados na Tabela 6.

Tipo de Estaca	F1	F2
Franki	2,50	5,00
Metálica	1,75	3,50
Pré-moldada de concreto	1,75	3,50
Escavada	3,00	6,00

Tabela 6 - Valores de F1 e F2 por Laprovitera e Benegas

Fonte: Velloso e Lopes (2010)

A partir da Tabela 6 e a equação 2.6, é possível calcular a capacidade de carga lateral e de ponta, também.

2.5.3 Método Décourt e Quaresma (1978)

Velloso e Lopes (2010), evidenciam que, em 1978, Luciano Décourt e Arthur R. Quaresma seguiram com os estudos para aplicação dos resultados da prova de carga e apresentaram, posteriormente, uma fórmula para estacas pré-moldadas. Ela fornece a carga de ruptura total por meio da soma das parcelas das resistências lateral e de ponta, utilizando a resistência à penetração obtida pelo número de golpes N_{SPT} (ALBUQUERQUE, 2020).

Assim, foi desenvolvida a equação 2.7, onde T é o valor de torque em kgf.m, calculando o Neq, número de golpes equivalente.

$$Neq = \frac{T}{1,2}$$
 (Eq. 2.7)

A resistência lateral (R_L) é dada pela equação 2.8, em que β é o fator de atrito, L, o comprimento da estaca, rL, o atrito lateral unitário e U, o perímetro da estaca, e é determinada a partir da equação 2.9 que apresenta a resistência lateral unitária média, com N_{SPT} , valor médio do número de golpes para cravação do amostrador-padrão nas camadas de solo, variando de maior ou igual a três e menor ou igual a cinquenta.

$$RL = \beta . rL . U . L$$
 (Eq. 2.8)

$$rL = 10. \left(\frac{Nspt}{3} + 1\right)$$
 (Eq. 2.9)

Associando as equações 2.8 e 2.9, obtém-se a equação 2.10 que apresenta a resistência lateral (R_L) de forma direta.

$$RL = \beta \cdot U \cdot \Delta L \cdot [10 \cdot (\frac{N_{spt}}{3} + 1)]$$
 (Eq. 2.10)

A equação 2.10 foi inicialmente estabelecida para estacas cravadas de concreto (α = 1 e β = 1) e, com o emprego de outros valores do parâmetro β , apresentados na Tabela 7, foi possível utilizá-la para outros tipos de estaca.

Tipo de	Tipos de Estaca				
Solo	Escavadas em Geral	Escavada (bentonita)	Hélice Contínua / Hélice de Deslocamento	Raiz	Injetadas sob Pressão
Argilas	0,80	0,90	1,00	1,50	3,00
Siltes	0,65	0,75	1,00	1,50	3,00
Areias	0,50	0,60	1,00	1,50	3,00

Tabela 7 - Valores de β adotados por Décourt e Quaresma (1978)

Fonte: Albuquerque (2020) (adaptada pelo próprio autor)

Por sua vez, a resistência de ponta (R_P) é determinada a partir da equação 2.11, onde A_P é a área da ponta da estaca, α , o fator de reação de ponta e r_P , a tensão resistente na ponta, determinado a partir da equação 2.12, onde C é o coeficiente correlacionador da resistência de ponta à penetração a resistência de ponta em função do tipo de solo e N_P , equação 2.13 é o valor resultante da média de três valores obtidos ao nível da estaca imediatamente acima e abaixo desta.

$$RP = \alpha . rp . Ap$$
 (Eq. 2.11)

$$rP = C . Np$$
 (Eq. 2.12)

$$Np = \frac{Nspt1 + Nspt2 + Nspt3}{3}$$
 (Eq. 2.13)

Os valores de C, são apresentados na Tabela 8 e os valores típicos de α , para alguns tipos de solo, na Tabela 9.

Tabela 8 - Valores de C ado	tados por Décourt e Quaresma (1978	3)
-----------------------------	------------------------------------	----

Solo	C (kPa)
Argilas	120
Siltes argilosos	200
Siltes arenosos	250
Areias	400

Fonte: Albuquerque (2020) (adaptada pelo próprio autor)

Tabela 9 - Valores de α adotados por Décourt e Quaresma (1978)

Tipo de Solo	Tipos de Estaca				
	Escavadas em Geral	Escavada (bentonita)	Hélice Contínua / Hélice de Deslocamento	Raiz	Injetadas sob Pressão
Argilas	0,85	0,85	0,30	0,85	1,00
Siltes	0,60	0,60	0,30	0,60	1,00
Areias	0,50	0,50	0,30	0,50	1,00

Fonte: Albuquerque (2020) (adaptada pelo próprio autor)

A partir desses dados, a equação 2.11 pode ser reescrita da forma da equação 2.14.

$$RP = \alpha . C . Np . Ap$$

De posse dos valores da resistência lateral (R_L) e da resistência de ponta (RP), Décourt e Quaresma (1978) anotaram a equação 2.15, que apresenta a capacidade de carga na ruptura da estaca.

$$Rrup = \beta . U . L . [10 . (\frac{Nspt}{3} + 1) + \alpha . C . Np . Ap$$
 (Eq. 2.15)

Consequentemente, a carga admissível para a estaca é descrita pela equação 2.16.

$$Radm = \frac{Rl}{1,3} + \frac{Rp}{4,0}$$
(Eq. 2.16)

(Eq. 2.14)
2.5.4 Método Antunes e Cabral (2000)

Velloso e Lopes (2010) afirmam que Antunes e Cabral (1996) estimam capacidade de carga de estacas hélice contínua de acordo com a equação 2.17, onde β_1 e β_2 são fatores que dependem do tipo de solo, conforme Tabela 10.

$$Qult = (\beta 2 x Nb) x Ab + U x \sum (\beta 1 x N) x \Delta L$$

(Eq 2.17)

Solo	ß1 (%)	ß2
Areia	4 - 5	2 - 2,5
Silte	2,5 - 3,5	1 - 2
Argila	2 - 3,5	1 - 1,5

Tabela 10 - Fatores β_1 e β_2 por Antunes e Cabral (1996)

(ß1N e ß2Nb em kgf/cm² e ß2Nb menor ou igual a 40kgf/cm²) Fonte: Velloso e Lopes (2010) (adaptada pelo próprio autor)

2.6 Análise estatística - RI

Abu-Farsakh e Titi (2004) relatam que o uso da análise estatística aplicada a métodos de capacidade de carga de estacas foi feito, pela primeira vez, por Briaud e Tucker 1988 e Long e Wysockey (1999) e tinha como objetivo avaliar o desempenho dos métodos de previsão de capacidade de carga de estacas hcm.

Com isso, o autores complementam que Briaud e Tucker (1988) Long e Wysockey (1999) sugeriram o uso de uma distribuição logarítmica de Qestimado/Qmedido, conforme equação 2.16, para avaliar o desempenho dos métodos de previsão da capacidade de carga de estacas e utilizar os resultados como um indicativo para classificar diferentes métodos, com base na sua precisão da previsão de carga e, assim, poder definir o melhor método a ser empregado na concepção do projeto de estrutura de fundações.

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma \ln x} \left[-\frac{1}{2} \left(\frac{\ln(x) - \mu(\ln)}{\sigma(\ln)} \right) \right]$$
(Eq. 2.16)

Na análise estatística, a média (μ) e o desvio padrão (σ) são indicadores importantes da exatidão e precisão do novo método de previsão e o objetivo desse novo método é deixar a média igual a um e o desvio padrão, zero.

Neste presente trabalho, serão considerados dois dos critérios propostos por Abu-Farsakh e Titi (2004) para a classificação do desempenho de diferentes métodos de previsão de capacidade de carga, sendo eles:

As equações da linha de melhor ajuste da capacidade estimada (Qp) versus capacidade medida (Qm) com o correspondente coeficiente de determinação (R²), sendo este denominado como a nota R1, conforme indicado na Figura 12;

Figura 12 - Gráfico da capacidade estimada (Qp) versus a capacidade medida (Qm)

Fonte: Abu-Farsakh e Titi (2004)

2. A média aritmética e desvio padrão para Qp/Qm das estacas analisadas para cada método, sendo denominada a nota R2;

A partir desses dois resultados, obtém-se o RI modificado a partir de Farsakh e Titi (2004), sendo este a soma de R1 e R2. Cada método utilizado é listado e classificado de acordo com a proximidade do cenário ideal próximo de um para Qp/Qm e R², por R1, e com a média próxima a um e o desvio padrão próximo de zero, por R2. Quanto menor o índice de classificação, melhor é o desempenho do método (ABU-FARSAKH & TITI, 2004).

3. ESTUDO DE CASO

Neste capítulo são descritas e apresentadas as etapas de desenvolvimento da pesquisa, as quais consistem na apresentação da metodologia, elaboração do estudo de caso a partir da delimitação das áreas estudadas, apresentação de dados de sondagens do tipo SPT e de provas de carga obtidas em Scipião (2019) e Dias (2016). Por fim, são indicadas as metodologias semiempíricas empregadas neste trabalho.

3.1 Metodologia

A metodologia aplicada para o desenvolvimento deste trabalho segue as seguintes etapas:

- Revisão Bibliográfica
- Coleta de dados de sondagens SPT e provas de carga obtidas em Scipião (2019) e Dias (2016)
- Cálculo da capacidade de carga estimada a partir dos métodos de Aoki Velloso (1975), Aoki Velloso Modificado por Laprovitera e Benegas (1988), Décourt e Quaresma (1978) e Antunes e Cabral (2000)
- Análise estatística a partir do RI modificado para os métodos de estimativa de capacidade de carga utilizados
- Classificação dos métodos a partir do RI modificado
- Avaliação dos resultados

As regiões estudadas foram escolhidas de acordo com suas demandas de uso de estacas do tipo hélice contínua monitorada como solução para o projeto de estruturas de fundação, com obras localizadas na cidade de Fortaleza, Ceará.

Os dados foram coletados a partir de 11 estacas do tipo hélice contínua executadas em cinco obras localizadas no município de Fortaleza, no estado do Ceará, das quais forneceram dados para a análise e classificação dos métodos de previsão da capacidade de carga determinada por metodologias semiempíricas.

Na apresentação dos resultados, foram utilizadas legendas para abreviação do nome dos métodos para melhor representação, conforme Tabela 11. Tabela 11 - Legenda para a abreviatura dos métodos

Método	Legenda
Aoki e Velloso (1975)	AV (1975)
Aoki e Velloso (1975) - Modificado por Laprovitera (1988) e Benegas (1993)	AV (1975) - LB (1978;1983)
Décourt e Quaresma (1978)	DQ (1978)
Antunes e Cabral (2000) por coeficientes mínimos	AC (2000) - MN
Antunes e Cabral (2000) por coeficientes máximos	AC (2000) - MX
Fanta, Flahavada nala nufunia auton	

Fonte: Elaborada pelo próprio autor

3.2 Áreas estudadas

A Tabela 12 e a Figura 13, apresentadas abaixo, apresentam a localização das obras cujos resultados das provas de carga das estacas foram interpretados e usados para a classificação do método da análise estatística do RI.

Referência da Obra	Local da Obra	Estacas Analisadas
Obra 1	Messejana, Fortaleza - Ceará.	4
Obra 2	Jacarecanga, Fortaleza - Ceará	2
Obra 3	Joaquim Távora, Fortaleza - Ceará	2
Obra 4	Eng. Luciano Cavalcante, Fortaleza - Ceará	2
Obra 5	Eng. Luciano Cavalcante, Fortaleza - Ceará	1
Canta: Diag (20	$16) \circ \text{Soinião} (2010)$	

Tabela 12 - Localização das obras estudadas

Fonte: Dias (2016) e Scipião (2019)

Figura 13 - Localização das obras estudadas

Fonte: criada pelo próprio autor

Na Tabela 13, são apresentadas algumas características das estacas estudadas nas obras, apresentando algumas características geométricas, de ensaio e de execução das fundações adotadas.

Dados	Estaca	Comprimento (m)	Diâmetro (m)	Deslocamento Máximo (mm)	Carga de Trabalho (kN)	Carga de Ensaio (kN)
	1	12,00	0,40	15,14	750	2250
Obra 1	2	12,00	0,50	12,80	1050	3150
	3	10,00	0,40	25,76	750	1050
	4	10,00	0,50	25,45	2250	3150
Obra 2	5	12,40	0,60	10,10	1500	3300
	6	11,70	0,60	13,10	1500	3300
Obra 3	7	20,96	0,60	7,62	1500	3300
Obia 5	8	20,56	0,60	7,17	1500	3300
Obra 4	9	12,08	0,60	2,23	1400	2240
Obia 4	10	11,12	0,60	2,45	1400	2240
Obra 5	11	14,72	0,50	6,86	1100	2200

Tabela 13 - Informações das estacas

Fonte: Dias (2016) e Scipião (2019) (adaptada pelo próprio autor)

3.3 Investigações Geotécnicas - SPT

As informações apresentadas nas tabelas a seguir foram obtidas a partir da coleta de dados em Scipião (2019) e Dias (2016).

Foram coletados dados de 11 furos de sondagem nos diferentes tipos de solos das 5 obras analisadas e com métodos conforme a Tabela 14.

Dados	Estaca	Sondagem
	1	SP. 01
Obra 1	2	SP. 01
Obla I	3	SP. 02
	4	SP. 02
	5	SP. 03
Obla 2	6	SP. 03
Obra 3	7	SP. 04
Obla 5	8	SP. 04
Obra 4	9	SP. 05
Obla 4	10	SP. 06
Obra 5	11	SP. 07

Tabela 14 - Sondagens SPT dos solos das obras

Fonte: Dias (2016) e Scipião (2019) (adaptada pelo próprio autor)

É importante informar que para o desenvolvimento deste trabalho, não foram usados os resultados de todas as sondagens realizadas para a caracterização do solo e a execução das obras. Sendo utilizada apenas as sondagens mais próximas das estacas que foram submetidas a provas de cargas estáticas.

3.3.1 SPT

O resultado das análises de solo a partir do ensaio sondagem à percussão, SPT, foram organizados em forma das Tabelas 15, 16, 17, 18, 19, 20 e 21, apresentadas abaixo com as informações e características pertinentes, sendo nomeadas de acordo com sua obra e a Tabela 14.

Tabela 15 - Sondagem SP. 01 da Obra 1

Profundidade (m)	Nspt	Profundidade da Camada (m)	Descrição da Camada
1	2		Areia fofa a pouco compactada, fina a média
2	3	3,60	com argila, pouco pedregulho e seixo de
3	5		quartzo, cinza alaranjada.
4	6		Areia fofa a medianamente compacta, com
5	3	6,60	argila e silte, com pedregulho e seixo de quartzo, muita a pouca concreção de óxido de
6	10		ferro, variegada.
7	15/7		Areia muito compacta, fina a grossa com muito
8	15/8	10.60	Areia muito compacta, fina a grossa com muit silte e argila, pouco a muito pedregulho e seix de guartzo e feldspato, presenca de mica,
9	15/2	10,00	de quartzo e feldspato, presença de mica,
10	15/3		variegada.
11	25/4		
12	25/3		Solo do altoração do rocha muito compacto
13	15/7		silto arenoso com argila, granulometria fina a
14	35/19	17,03	média, presença de mica com pouco
15	15/5		pedregulho e seixo de quartzo, variegado a
16	15/9		
17,03	15/3		

|--|

Obs.: o nível d'água foi encontrado a 6,00 metros de profundidade.

Tabela 16 - Sondagem SP. 02 da Obra 1

Profundidade (m)	Nspt	Profundidade da Camada (m)	Descrição da Camada
1	4	0,70	Aterro
2	3	2,60	Areia fofa, fina a média com argila, muito pouco pedregulho e seixo de quartzo, cinza alaranjada
3	6		Araia nouco composta a muito composta, fina
4	13		a grossa com argila e silte, pouco a muito
5	12	7,60	pedregulho e seixo de quartzo e feldspato,
6	12		muitas concreções de óxido de ferro,
7	15/7		vanegaua
8	31/21		Areia muito compacta, fina a grossa com muito
9	29/25	10,60	silte e argila, pouco a muito pedregulho e seixo
10	31/22		cinza esbranquiçada, variegada
11	15/7		
12	31/23		Sala de alteração de reche muite composte e
13	34/20		compacto, silto arenoso com argila,
14	34/22	17,22	granulometria fina a média, presença de mica
15	15/6		com pouco pedregulho e seixo de quartzo,
16	26		Ivaneyado a ciliza amonoliado
17,22	15/7		
Obs.: o nível o	d'água	foi encontrado a	4,20 metros de profundidade.

Sondagem a Percussão - SP. 02

Tabela 17 - Sondagem SP. 03 da Obra 2

Profundidade (m)	Nspt	Profundidade da Camada (m)	Descrição da Camada
1	4		
2	8		
3	9		
4	11		
5	21		
6	27	11,00	Areia siltosa, tota a medianamente compacta, amarela
7	19		
8	18		
9	16		
10	12		
11	18		
12	14		
13	31	14,00	Areia siltosa, medianamente compacta a
14	38		
15	30/14	15,00	Areia siltosa, com concreções lateríticas, compacta a muito compacta, variegada.
16	41/20	16.00	Areia siltosa, com pedregulhos de quartzo,
17	45	10,90	muito compacta, verde.
18	33	10.00	Areia siltosa, compacta a muito compacta,
19	26	19,00	branca.
20	12		
21	14		
22	21		Areia siltosa, com pedregulho de quartzo,
23	32	26,15	medianamente compacta a muito compacta,
24	-		variegado.
25	-		
26	-		

Sondagem a Percussão - SP. 03

Obs.: o nível d'água foi encontrado a 4,80 metros de profundidade.

Tabela 18 - Sondagem SP. 04 da Obra 3

Profundidade (m)	Nspt	Profundidade da Camada (m)	Descrição da Camada
0,65	3		
1	4		
2	6		
3	5		
4	11		
5	16		
6	12	12,45	Areia muito fofa a média, cor creme.
7	12		
8	26		
9	27		
10	20		
11	10		
12	8		
13	14		
14	10		
15	12		
16	18	19,50	Arglia arenosa, media a dura, vermelha,
17	20		
18	18		
19	20/4		

Sondagem a Percussão - SP. 04

Obs.: o nível d'água foi encontrado a 15,00 metros de profundidade.

Tabela 19 - Sondagem SP. 05 da Obra 4

Profundidade (m)	Nspt	Profundidade da Camada (m)	Descrição da Camada
1	2/45	0,20	Areia fina a média, siltosa, cinza.
2	2/45	1,85	Areia fina a média, pouco argilosa, fofa, amarela.
3	2		
4	3	5 95	Areia fina a média, pouco argilosa, fofa,
5	4	5,65	amarela, cinza e vermelha, variegada.
6	4		
7	5	8,00	Areia fina a média, pouco argilosa com pedregulhos, fofa a pouco compacta, amarela
8	24		e cinza, variegada.
9	37	8,75	Areia arenosa com pedregulhos e concreções, dura, amarela, variegada.
10	29	10.95	Areia arenosa com pedregulhos, dura, cinza e
11	28	10,85	vermelha, variegada.
12	42		
13	35/5	15 10	Argila arenosa com pedregulhos, dura, cinza e
14	35/15	10,10	amarela, variegada.
15	35/10		

\mathbf{S}

Obs.: o nível d'água foi encontrado a 2,46 metros de profundidade.

Tabela 20 - Sondagem SP. 06 da Obra 4

Profundidade (m)	Nspt	Profundidade da Camada (m)	Descrição da Camada			
1	2	1,00	Areia fina a média, siltosa, fofa, cinza.			
2	2	1,85	Areia fina a média, pouco argilosa, fofa, cinza clara.			
3	2/45					
4	2		Areia fina a média, pouco argilosa, fofa a			
5	2	7,00	pouco compacta, cinza e amarelo, variegada,			
6	5		com pedregulhos.			
7	38					
8	25	8,00	Areia muito arenosa com pedregulhos, dura, cinza e vermelha, variegada.			
9	39	0.85	Areia arenosa com pedregulhos, dura, cinza e			
10	28	9,00	vermelha, variegada.			
11	35/10					
12	50	14 10	Areia arenosa com pedregulhos, dura, cinza e			
13	35/15	14,10	amarela, variegada.			
14	35/10					

Sondagem a Percussão - SP. 06

Obs.: o nível d'água foi encontrado a 2,00 metros de profundidade.

Tabela 21 - Sondagem SP. 07 da Obra 5

Profundidade (m)	Nspt	Profundidade da Camada (m)	Descrição da Camada
1	6		
2	4		
3	4		
4	3		
5	6		
6	4		Areia fofa a muito compacta, fina a grossa com
7	4	14 01	pouca a muita argila, muito a pouco
8	7	14,01	pedregulho, seixo de quartzo e feldspato, cinza
9	23		a cinza esverdeada.
10	15/8		
11	15/7		
12	15/7		
13	15/1		
14	15/1		

Sondagem a Percussão - SP. 07

Obs.: o nível d'água foi encontrado a 1,80 metros de profundidade.

Fonte: Dias (2016) e Scipião (2019) (adaptada pelo próprio autor)

3.4 Provas de Carga

As Figuras 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 e 24 exibem as curvas carga vs recalque obtidas a partir dos testes desenvolvidos por Scipião (2016) e Dias (2019) apresentados para cada uma das estacas analisadas.

A Figura 14 apresenta a estaca 1, localizada da obra 1, a qual apresenta um valor de recalque máximo de 15,14 mm ao aplicar uma carga de 2250 kN durante o ensaio de prova de carga.

Fonte: Scipião (2019) e Dias (2016) (adaptada pelo próprio autor)

A Figura 15 apresenta a estaca 2, localizada da obra 1, a qual apresenta um valor de recalque máximo de 12,80 mm ao aplicar uma carga de 3150 kN durante o ensaio de prova de carga.

Figura 15 - Curva Carga vs Recalque da Estaca 2 (Obra 1)

Fonte: Scipião (2019) e Dias (2016) (adaptada pelo próprio autor)

A Figura 16 apresenta a estaca 3, localizada da obra 1, a qual apresenta um valor de recalque máximo de 25,78 mm ao aplicar uma carga de 2250 kN durante o ensaio de prova de carga.

Figura 16 - Curva Carga vs Recalque da Estaca 3 (Obra 1)

Fonte: Tecnord (2016) (adaptada pelo próprio autor)

A Figura 17 apresenta a estaca 4, localizada da obra 1, a qual apresenta um valor de recalque máximo de 25,45 mm ao aplicar uma carga de 2520 kN durante o ensaio de prova de carga.

Figura 17 - Curva Carga vs Recalque da Estaca 4 (Obra 1)

Fonte: Scipião (2019) e Dias (2016) (adaptada pelo próprio autor)

A Figura 18 apresenta a estaca 5, localizada da obra 2, a qual apresenta um valor de recalque máximo de 10,10mm ao aplicar uma carga de 3300 kN durante o ensaio de prova de carga.

Figura 18 - Curva Carga vs Recalque da Estaca 5 (Obra 2)

Fonte: Scipião (2019) e Dias (2016) (adaptada pelo próprio autor)

A Figura 19 apresenta a estaca 6, localizada da obra 2, a qual apresenta um valor de recalque máximo de 13,10 mm ao aplicar uma carga de 3000 kN durante o ensaio de prova de carga.

Fonte: Scipião (2019) e Dias (2016) (adaptada pelo próprio autor)

A Figura 20 apresenta a estaca 7, localizada da obra 3, a qual apresenta um valor de recalque máximo de 7,62 mm ao aplicar uma carga de 3000 kN durante o ensaio de prova de carga.

Figura 20 - Curva Carga vs Recalque da Estaca 7 (Obra 3)

Fonte: Scipião (2019) e Dias (2016) (adaptada pelo próprio autor)

A Figura 21 apresenta a estaca 8, localizada da obra 3, a qual apresenta um valor de recalque máximo de 7,17 mm ao aplicar uma carga de 3000 kN durante o ensaio de prova de carga.

Fonte: Scipião (2019) e Dias (2016) (adaptada pelo próprio autor)

A Figura 22 apresenta a estaca 9, localizada da obra 4, a qual apresenta um valor de recalque máximo de 2,23 mm ao aplicar uma carga de 2240 kN durante o teste de prova de carga.

Figura 22 - Curva Carga vs Recalque da Estaca 9 (Obra 4)

Fonte: Scipião (2019) e Dias (2016) (adaptada pelo próprio autor)

A Figura 23 apresenta a estaca 10, localizada da obra 4, a qual apresenta um valor de recalque máximo de 2,45 mm ao aplicar uma carga de 2240 kN durante o teste de prova de carga.

Figura 23 - Curva Carga vs Recalque da Estaca 10 (Obra 4)

Fonte: Scipião (2019) e Dias (2016) (adaptada pelo próprio autor)

A Figura 24 apresenta a estaca 11, localizada da obra 5, a qual apresenta um valor de recalque máximo de 6,86 mm ao aplicar uma carga de 2200 kN durante o teste de prova de carga.

Figura 24 - Curva Carga vs Recalque da Estaca 11 (Obra 5)

Fonte: Scipião (2019) e Dias (2016) (adaptada pelo próprio autor)

A Tabela 22, apresenta o resumo dos dados obtidos a partir dos testes desenvolvidos por Scipião (2016) e Dias (2019) apresentados para cada uma das estacas analisadas.

Dados	Estaca	Deslocamento Máximo (mm)	Carga Máxima (kN)
	1	15,14	2250
Obra 1	2	12,80	3150
	3	25,78	2250
	4	25,45	2520
Obra 2	5	10,10	3300
Obia 2	6	13,10	3000
Obra 3	7	7,62	3000
Obia 3	8	7,17	3000
Obra 4	9	2,23	2240
	10	2,45	2240
Obra 5	11	6,86	2200

Fonte: Elaborada pelo próprio autor

4.0 RESULTADOS E DISCUSSÕES

Neste item serão apresentados os resultados das estimativas de capacidades de carga através dos quatro métodos abordados neste trabalho.

4.1 Estimativas de capacidade de carga

A estaca número 1, localizada na obra 1, apresenta diâmetro de 400 mm e comprimento final de 12 m. Na Tabela 23, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2021 kN.

Estaca 1, Obra 1 - Aoki e Velloso (1975)								
Profundidade (m)	Tipo de solo	NSPT	R⊤ (kN)	R⊵ (kN)	R∟ (kN)	R∟ ACUMULADO (kN)		
1	Areia argilosa	2	51	44	7	7		
2	Areia argilosa	3	83	67	10	17		
3	Areia argilosa	5	144	111	17	33		
4	Areia argilossiltosa	6	185	133	19	52		
5	Areia argilossiltosa	3	128	67	9	61		
6	Areia argilossiltosa	10	314	222	31	92		
7	Areia argilossiltosa	50	1358	1110	155	248		
8	Areia argilossiltosa	50	1513	1110	155	403		
9	Areia argilossiltosa	50	1669	1110	155	559		
10	Areia argilossiltosa	50	1824	1110	155	714		
11	Silte arenoso	50	1870	1005	151	865		
12	Silte arenoso	50	2021	1005	151	1016		
13	Silte arenoso	50	2172	1005	151	1166		
14	Silte arenoso	50	2322	1005	151	1317		
15	Silte arenoso	50	2473	1005	151	1468		
16	Silte arenoso	50	2624	1005	151	1619		
17,03	Silte arenoso	50	2629	1005	5	1623		

Tabela 23 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975)

Fonte: Elaborada pelo próprio autor

A estaca número 1, localizada na obra 1, apresenta diâmetro de 400 mm e comprimento final de 12 m. Na Tabela 24, é possível identificar a capacidade de

carga obtida pelo método semiempírico de Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983). Com base nos resultados do ensaio de SPT, Tabela 13, e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2177 kN.

Tabela 24 - Cálculo de previsão de capacidade de carga – Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983)

Laprovitera (1988) e Benegas (1993)								
Profundidade	Tipo de solo	NSPT	Rт	R₽	R∟	RL ACUMULADO		
(m)			(kN)	(kN)	(kN)	(kN)		
1	Areia argilosa	2	58	50	8	8		
2	Areia argilosa	3	94	75	11	19		
3	Areia argilosa	5	163	126	19	38		
4	Areia argilossiltosa	6	181	126	18	55		
5	Areia argilossiltosa	3	127	63	9	64		
6	Areia argilossiltosa	10	303	209	29	93		
7	Areia argilossiltosa	50	1287	1047	147	240		
8	Areia argilossiltosa	50	1434	1047	147	387		
9	Areia argilossiltosa	50	1580	1047	147	533		
10	Areia argilossiltosa	50	1727	1047	147	680		
11	Silte arenoso	50	2005	1152	173	853		
12	Silte arenoso	50	2177	1152	173	1025		
13	Silte arenoso	50	2350	1152	173	1198		
14	Silte arenoso	50	2523	1152	173	1371		
15	Silte arenoso	50	2696	1152	173	1544		
16	Silte arenoso	50	2868	1152	173	1717		
17,03	Silte arenoso	50	2874	1152	5	1722		

Estaca 1, Obra 1 - Método de Aoki e Velloso (1975) - Modificado por

Fonte: Elaborada pelo próprio autor

A estaca número 1, localizada na obra 1, apresenta diâmetro de 400 mm e comprimento final de 12 metros. Na Tabela 25, é possível identificar a capacidade de carga obtida pelo método semiempírico de Décourt e Quaresma (1978). Com base nos resultados do ensaio de SPT, Tabela 13, e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3265 kN.

Estaca 1, Obra 1 - Décourt e Quaresma (1978)								
Profundidade	Tipo de solo	Nept	R⊤	R₽	R∟	RL ACUMULADO		
(m)		INSPI	(kN)	(kN)	(kN)	(kN)		
1	Areias	2	121	101	21	21		
2	Areias	3	195	151	23	44		
3	Areias	5	322	251	27	71		
4	Areias	6	401	302	29	100		
5	Areias	3	279	151	28	128		
6	Areias	10	664	503	33	161		
7	Areias	50	2734	2513	60	221		
8	Areias	50	2814	2513	80	301		
9	Areias	50	2910	2513	96	397		
10	Areias	50	3019	2513	108	505		
11	Areias	50	3138	2513	119	624		
12	Areias	50	3265	2513	127	752		
13	Areias	50	3400	2513	135	886		
14	Areias	50	3541	2513	141	1027		
15	Areias	50	3687	2513	146	1174		
16	Areias	50	3838	2513	151	1325		
17,03	Areias	50	3843	2513	5	1329		

Tabela 25 - Cálculo de previsão de capacidade de carga – Método Décourt e Quaresma (1978)

A estaca número 1, localizada na obra 1, apresenta diâmetro de 400 mm e comprimento final de 12 metros. Na Tabela 26, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos. Com base nos resultados do ensaio de SPT, Tabela 13, e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2156 kN.

Estaca 1, Obra 1 - Antunes e Cabral (2000)							
Profundidade	Tipo de	Мерт	R⊤ (kNI)	R₽	R∟	R∟ ACUMULADO	
(m)	solo	INSFI		(kN)	(kN)	(kN)	
1	Areia	2	60	50	10	10	
2	Areia	3	101	75	15	25	
3	Areia	5	176	126	25	50	
4	Areia	6	231	151	30	80	
5	Areia	3	171	75	15	96	
6	Areia	10	397	251	50	146	
7	Areia	50	900	503	251	397	
8	Areia	50	1151	503	251	648	
9	Areia	50	1402	503	251	900	
10	Areia	50	1654	503	251	1151	
11	Areia	50	1905	503	251	1402	
12	Areia	50	2156	503	251	1654	
13	Areia	50	2408	503	251	1905	
14	Areia	50	2659	503	251	2156	
15	Areia	50	2910	503	251	2408	
16	Areia	50	3162	503	251	2659	
17,03	Areia	50	3169	503	8	2667	

Tabela 26 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) com coeficientes ß1 e ß2 mínimos

A estaca número 1, localizada na obra 1, apresenta diâmetro de 400 mm e comprimento final de 12 metros. Na Tabela 27, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos. Com base nos resultados do ensaio de SPT, Tabela 13, e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2570 kN.

Estaca 1, Obra 1 - Antunes e Cabral (2000)								
Profundidade	Tipo de	Мерт	R⊤ (kNI)	R₽	R∟	R∟ ACUMULADO		
(m)	solo	INSFI		(kN)	(kN)	(kN)		
1	Areia	2	75	63	13	13		
2	Areia	3	126	94	19	31		
3	Areia	5	220	157	31	63		
4	Areia	6	289	188	38	101		
5	Areia	3	214	94	19	119		
6	Areia	10	496	314	63	182		
7	Areia	50	999	503	314	496		
8	Areia	50	1313	503	314	811		
9	Areia	50	1627	503	314	1125		
10	Areia	50	1942	503	314	1439		
11	Areia	50	2256	503	314	1753		
12	Areia	50	2570	503	314	2067		
13	Areia	50	2884	503	314	2381		
14	Areia	50	3198	503	314	2695		
15	Areia	50	3512	503	314	3010		
16	Areia	50	3826	503	314	3324		
17,03	Areia	50	3836	503	9	3333		

Tabela 27 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) com coeficientes ß1 e ß2 máximos

A estaca número 2, localizada na obra 1, apresenta diâmetro de 500 mm e comprimento final de 12 metros. Na Tabela 28, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2840 kN.

Profundidade (m)	Tipo de solo	NSPT	R⊤ (kN)	R⊵ (kN)	R∟ (kN)	R∟ ACUMULADO (kN)
1	Areia argilosa	2	78	69	8	8
2	Areia argilosa	3	125	104	12	21
3	Areia argilosa	5	215	173	21	42
4	Areia argilossiltosa	6	273	208	23	65
5	Areia argilossiltosa	3	181	104	12	77
6	Areia argilossiltosa	10	462	347	39	115
7	Areia argilossiltosa	50	2044	1734	194	310
8	Areia argilossiltosa	50	2238	1734	194	504
9	Areia argilossiltosa	50	2433	1734	194	698
10	Areia argilossiltosa	50	2627	1734	194	892
11	Silte arenoso	50	2652	1571	188	1081
12	Silte arenoso	50	2840	1571	188	1269
13	Silte arenoso	50	3029	1571	188	1458
14	Silte arenoso	50	3217	1571	188	1646
15	Silte arenoso	50	3406	1571	188	1835
16	Silte arenoso	50	3594	1571	188	2023
17	Silte arenoso	50	3783	1571	188	2212
17,03	Silte arenoso	50	3788	1571	6	2218

Tabela 28 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975)

Estaca 2, Obra 1 - Aoki e Velloso (1975)

A estaca número 2, localizada na obra 1, apresenta diâmetro de 500 mm e comprimento final de 12 metros. Na Tabela 29, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3082 kN. Tabela 29 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983)

Profundidade	Tipo de solo	NSPT	RT (kN)	R⊳ (kN)		
(III)			(KIN)		(KIN)	(KIN)
1	Areia argilosa	2	88	79	9	9
2	Areia argilosa	3	141	118	14	24
3	Areia argilosa	5	243	196	24	47
4	Areia argilossiltosa	6	265	196	22	69
5	Areia argilossiltosa	3	178	98	11	80
6	Areia argilossiltosa	10	444	327	37	117
7	Areia argilossiltosa	50	1936	1636	183	300
8	Areia argilossiltosa	50	2120	1636	183	483
9	Areia argilossiltosa	50	2303	1636	183	667
10	Areia argilossiltosa	50	2486	1636	183	850
11	Silte arenoso	50	2866	1800	216	1066
12	Silte arenoso	50	3082	1800	216	1282
13	Silte arenoso	50	3298	1800	216	1498
14	Silte arenoso	50	3514	1800	216	1714
15	Silte arenoso	50	3730	1800	216	1930
16	Silte arenoso	50	3946	1800	216	2146
17	Silte arenoso	50	4162	1800	216	2362
17,03	Silte arenoso	50	4168	1800	6	2368

Estaca 2, Obra 1 - Método de Aoki e Velloso (1975) - Modificado por Laprovitera (1988) e Benegas (1993)

Fonte: Elaborada pelo próprio autor

A estaca número 2, localizada na obra 1, apresenta diâmetro de 500 mm e comprimento final de 12 metros. Na Tabela 30, é possível identificar a capacidade de carga obtida pelo método semiempírico de Décourt e Quaresma (1978). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 4867 kN.

Estaca 2, Obra 1 - Décourt e Quaresma (1978)								
Profundidade (m)	Tipo de solo	Nspt	R⊤ (kN)	R⊵ (kN)	R∟ (kN)	R∟ ACUMULADO (kN)		
1	Areias	2	183	157	26	26		
2	Areias	3	291	236	29	55		
3	Areias	5	481	393	33	88		
4	Areias	6	596	471	37	125		
5	Areias	3	396	236	36	160		
6	Areias	10	987	785	41	201		
7	Areias	50	4203	3927	75	276		
8	Areias	50	4303	3927	100	376		
9	Areias	50	4423	3927	120	496		
10	Areias	50	4559	3927	136	632		
11	Areias	50	4707	3927	149	780		
12	Areias	50	4867	3927	159	940		
13	Areias	50	5035	3927	168	1108		
14	Areias	50	5211	3927	176	1284		
15	Areias	50	5394	3927	183	1467		
16	Areias	50	5583	3927	189	1656		
17,03	Areias	50	5589	3927	6	1662		

Tabela 30 - Cálculo de previsão de capacidade de carga – Décourt e Quaresma (1978)

A estaca número 2, localizada na obra 1, apresenta diâmetro de 500 mm e comprimento final de 12 metros. Na Tabela 31, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2853 kN. Tabela 31 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) com coeficientes ß1 e ß2 mínimos

Profundidade (m)	Tipo de solo	NSPT	R⊤ (kN)	R⊵ (kN)	R∟ (kN)	R∟ ACUMULADO (kN)
1	Areia	2	91	79	13	13
2	Areia	3	149	118	19	31
3	Areia	5	259	196	31	63
4	Areia	6	336	236	38	101
5	Areia	3	237	118	19	119
6	Areia	10	575	393	63	182
7	Areia	50	1282	785	314	496
8	Areia	50	1596	785	314	811
9	Areia	50	1910	785	314	1125
10	Areia	50	2224	785	314	1439
11	Areia	50	2538	785	314	1753
12	Areia	50	2853	785	314	2067
13	Areia	50	3167	785	314	2381
14	Areia	50	3481	785	314	2695
15	Areia	50	3795	785	314	3010
16	Areia	50	4109	785	314	3324
17	Areia	50	4423	785	314	3638
17,03	Areia	50	4433	785	9	3647

Estaca 2, Obra 1 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 2, localizada na obra 1, apresenta diâmetro de 500 mm e comprimento final de 12 metros. Na Tabela 32, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3369 kN. Tabela 32 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) com coeficientes ß1 e ß2 máximos

Profundidade (m)	Tipo de solo	NSPT	R⊤ (kN)	R⊵ (kN)	R∟ (kN)	R∟ ACUMULADO (kN)
1	Areia	2	114	98	16	16
2	Areia	3	187	147	24	39
3	Areia	5	324	245	39	79
4	Areia	6	420	295	47	126
5	Areia	3	296	147	24	149
6	Areia	10	719	491	79	228
7	Areia	50	1406	785	393	620
8	Areia	50	1799	785	393	1013
9	Areia	50	2191	785	393	1406
10	Areia	50	2584	785	393	1799
11	Areia	50	2977	785	393	2191
12	Areia	50	3369	785	393	2584
13	Areia	50	3762	785	393	2977
14	Areia	50	4155	785	393	3369
15	Areia	50	4547	785	393	3762
16	Areia	50	4940	785	393	4155
17	Areia	50	5333	785	393	4547
17,03	Areia	50	5345	785	12	4559

Estaca 2, Obra 1 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 3, localizada na obra 1, apresenta diâmetro de 400 mm e comprimento final de 10 metros. Na Tabela 33, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 1533 kN.

Profundidade	Tino do colo	Nort	R⊤	R₽	R∟	RL ACUMULADO			
(m)		INSPI	(kN)	(kN)	(kN)	(kN)			
1	Silte argiloarenoso	4	73	64	10	10			
2	Areia argilossiltosa	3	85	67	9	19			
3	Areia siltoargilosa	6	168	133	16	35			
4	Areia siltoargilosa	13	358	289	35	69			
5	Areia siltoargilosa	12	368	266	32	101			
6	Areia siltoargilosa	12	400	266	32	133			
7	Areia siltoargilosa	50	1377	1110	133	267			
8	Areia	44	1450	1106	77	344			
9	Areia	34	1258	855	60	404			
10	Areia	42	1533	1056	74	478			
11	Silte arenoargiloso	50	1393	796	119	597			
12	Silte arenoargiloso	44	1403	700	105	702			
13	Silte arenoargiloso	50	1617	796	119	822			
14	Silte arenoargiloso	46	1664	732	110	931			
15	Silte arenoargiloso	50	1847	796	119	1051			
16	Silte arenoargiloso	26	1527	414	62	1113			
17	Silte arenoargiloso	50	2028	796	119	1232			
17,22	Silte arenoargiloso	50	2054	796	26	1258			

Tabela 33 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975)

Estaca 3, Obra 1 - Aoki e Velloso (1975)

Fonte: Elaborada pelo próprio autor

A estaca número 3, localizada na obra 1, apresenta diâmetro de 400 mm e comprimento final de 10 metros. Na Tabela 34, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2453 kN. Tabela 34 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983)

		,	<u> </u>	<u>`</u>	ŕ	
Profundidade	Tipo de solo	Nedt	R⊤	R₽	R∟	R∟ ACUMULADO
(m)		INSPI	(kN)	(kN)	(kN)	(kN)
1	Silte argiloarenoso	4	48	42	6	6
2	Areia argilossiltosa	3	78	63	9	15
3	Areia siltoargilosa	6	212	176	21	36
4	Areia siltoargilosa	13	463	381	46	82
5	Areia siltoargilosa	12	476	352	42	124
6	Areia siltoargilosa	12	518	352	42	166
7	Areia siltoargilosa	50	1808	1466	176	342
8	Areia	44	2314	1843	129	471
9	Areia	34	1995	1424	100	571
10	Areia	42	2453	1759	123	694
11	Silte arenoargiloso	50	1778	942	141	836
12	Silte arenoargiloso	44	1789	829	124	960
13	Silte arenoargiloso	50	2044	942	141	1101
14	Silte arenoargiloso	46	2098	867	130	1231
15	Silte arenoargiloso	50	2315	942	141	1373
16	Silte arenoargiloso	26	1936	490	74	1446
17	Silte arenoargiloso	50	2530	942	141	1588
17,22	Silte arenoargiloso	50	2561	942	31	1619

Estaca 3, Obra 1 - Método de Aoki e Velloso (1975) - Modificado por Laprovitera (1988) e Benegas (1993)

Fonte: Elaborada pelo próprio autor

A estaca número 3, localizada na obra 1, apresenta diâmetro de 400 mm e comprimento final de 10 metros. Na Tabela 35, é possível identificar a capacidade de carga obtida pelo método semiempírico de Décourt e Quaresma (1978). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2691 kN.

Estada 3, Obra 1 - Decourt e Quaresina (1976)								
Profundidade (m)	Tipo de solo	NSPT	R⊤ (kN)	R⊵ (kN)	R∟ (kN)	R∟ ACUMULADO (kN)		
1	Areias	4	230	201	29	29		
2	Areias	3	207	151	27	57		
3	Areias	6	389	302	31	87		
4	Areias	13	781	653	40	127		
5	Areias	12	775	603	44	171		
6	Areias	12	822	603	47	219		
7	Areias	50	2805	2513	72	291		
8	Areias	44	2591	2212	88	379		
9	Areias	34	2184	1709	95	475		
10	Areias	42	2691	2111	105	579		
11	Siltes arenosos	50	2266	1571	115	695		
12	Siltes arenosos	44	2199	1382	122	817		
13	Siltes arenosos	50	2518	1571	130	947		
14	Siltes arenosos	46	2527	1445	135	1082		
15	Siltes arenosos	50	2794	1571	141	1223		
16	Siltes arenosos	26	2180	817	140	1363		
17	Siltes arenosos	50	3078	1571	145	1508		
17,22	Siltes arenosos	50	3111	1571	33	1540		

Tabela 35 - Cálculo de previsão de capacidade de carga – Método Décourt e Quaresma (1978)

Estaca 3, Obra 1 - Décourt e Quaresma (1978)

Fonte: Elaborada pelo próprio autor

A estaca número 3, localizada na obra 1, apresenta diâmetro de 400 mm e comprimento final de 10 metros. Na Tabela 36 é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 1608 kN. Tabela 36 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) com coeficientes ß1 e ß2 mínimos

Profundidade (m)	Tipo de solo	NSPT	R⊤ (kN)	R⊵ (kN)	R∟ (kN)	R∟ ACUMULADO (kN)
1	Areia	4	121	101	20	20
2	Areia	3	111	75	15	35
3	Areia	6	216	151	30	65
4	Areia	13	457	327	65	131
5	Areia	12	493	302	60	191
6	Areia	12	553	302	60	251
7	Areia	50	1005	503	251	503
8	Areia	44	1226	503	221	724
9	Areia	34	1397	503	171	895
10	Areia	42	1608	503	211	1106
11	Areia	50	1860	503	251	1357
12	Areia	44	2081	503	221	1578
13	Areia	50	2332	503	251	1830
14	Areia	46	2564	503	231	2061
15	Areia	50	2815	503	251	2312
16	Areia	26	2946	503	131	2443
17	Areia	50	3197	503	251	2694
17,22	Areia	50	3252	503	55	2750

Estaca 3, Obra 1 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 3, localizada na obra 1, apresenta diâmetro de 400 mm e comprimento final de 10 metros. Na Tabela 37 é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 1885 kN. Tabela 37 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) com coeficientes ß1 e ß2 máximos

Profundidade	Tino de solo	Мерт	R⊤	Rp	R∟	R∟ ACUMULADO
(m)		INSPI	(kN)	(kN)	(kN)	(kN)
1	Areia	4	151	126	25	25
2	Areia	3	138	94	19	44
3	Areia	6	270	188	38	82
4	Areia	13	572	408	82	163
5	Areia	12	616	377	75	239
6	Areia	12	691	377	75	314
7	Areia	50	1131	503	314	628
8	Areia	44	1407	503	276	905
9	Areia	34	1621	503	214	1118
10	Areia	42	1885	503	264	1382
11	Areia	50	2199	503	314	1696
12	Areia	44	2476	503	276	1973
13	Areia	50	2790	503	314	2287
14	Areia	46	3079	503	289	2576
15	Areia	50	3393	503	314	2890
16	Areia	26	3556	503	163	3054
17	Areia	50	3870	503	314	3368
17,22	Areia	50	3940	503	69	3437

Estaca 3, Obra 1 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 4, localizada na obra 1, apresenta diâmetro de 500 mm e comprimento final de 10 metros. Na Tabela 38, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2247 kN.

Profundidade (m)	Tipo de solo	NSPT	R⊤ (kN)	R⊵ (kN)	R∟ (kN)	R∟ ACUMULADO (kN)			
1	Silte argiloarenoso	4	111	99	12	12			
2	Areia argilossiltosa	3	128	104	12	24			
3	Areia siltoargilosa	6	252	208	20	44			
4	Areia siltoargilosa	13	538	451	43	87			
5	Areia siltoargilosa	12	543	416	40	127			
6	Areia siltoargilosa	12	583	416	40	167			
7	Areia siltoargilosa	50	2068	1734	167	333			
8	Areia	44	2158	1728	97	430			
9	Areia	34	1840	1335	75	505			
10	Areia	42	2247	1649	92	597			
11	Silte arenoargiloso	50	1990	1244	149	746			
12	Silte arenoargiloso	44	1972	1094	131	878			
13	Silte arenoargiloso	50	2271	1244	149	1027			
14	Silte arenoargiloso	46	2308	1144	137	1164			
15	Silte arenoargiloso	50	2557	1244	149	1313			
16	Silte arenoargiloso	26	2038	647	78	1391			
17	Silte arenoargiloso	50	2784	1244	149	1540			
17,22	Silte arenoargiloso	50	2817	1244	33	1573			

Tabela 38 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975)

Estaca 4, Obra 1 - Aoki e Velloso (1975)

Fonte: Elaborada pelo próprio autor

A estaca número 4, localizada na obra 1, apresenta diâmetro de 500 mm e comprimento final de 10 metros. Na Tabela 39, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975) Modificado por Laprovitera (1988) e Benegas (1993). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3617 kN.
Tabela 39 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975) Modificado por Laprovitera (1988) e Benegas (1993)

Profundidad	Tipo de solo	NSPT	Rτ	R₽	R∟	RL ACUMULADO		
e (m)			(kN)	(kN)	(kN)	(kN)		
1	Silte argiloarenoso	4	73	65	8	8		
2	Areia argilossiltosa	3	117	98	11	19		
3	Areia siltoargilosa	6	320	275	26	45		
4	Areia siltoargilosa	13	698	596	57	102		
5	Areia siltoargilosa	12	705	550	53	155		
6	Areia siltoargilosa	12	758	550	53	208		
7	Areia siltoargilosa	50	2719	2291	220	428		
8	Areia	44	3469	2880	161	589		
9	Areia	34	2939	2225	125	714		
10	Areia	42	3617	2749	154	868		
11	Silte arenoargiloso	50	2517	1473	177	1044		
12	Silte arenoargiloso	44	2496	1296	156	1200		
13	Silte arenoargiloso	50	2849	1473	177	1377		
14	Silte arenoargiloso	46	2894	1355	163	1539		
15	Silte arenoargiloso	50	3189	1473	177	1716		
16	Silte arenoargiloso	26	2574	766	92	1808		
17	Silte arenoargiloso	50	3457	1473	177	1985		
17,22	Silte arenoargiloso	50	3496	1473	39	2023		

Estaca 4, Obra 1 - Método de Aoki e Velloso (1975) - Modificado por Laprovitera (1988) e Benegas (1993)

Fonte: Elaborada pelo próprio autor

A estaca número 4, localizada na obra 1, apresenta diâmetro de 500 mm e comprimento final de 10 metros. Na Tabela 40, é possível identificar a capacidade de carga obtida pelo método semiempírico de Décourt e Quaresma (1978). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 4023 kN.

Estaca 4, Obra 1 - Decourt e Quaresina (1976)								
Profundidade (m)	Tipo de solo	NSPT	R⊤ (kN)	R⊵ (kN)	R∟ (kN)	R∟ ACUMULADO (kN)		
1	Areias	4	351	314	37	37		
2	Areias	3	306	236	34	71		
3	Areias	6	580	471	38	109		
4	Areias	13	1180	1021	50	159		
5	Areias	12	1157	942	56	214		
6	Areias	12	1216	942	59	274		
7	Areias	50	4291	3927	91	364		
8	Areias	44	3930	3456	110	474		
9	Areias	34	3264	2670	119	593		
10	Areias	42	4023	3299	131	724		
11	Siltes arenosos	50	3323	2454	144	869		
12	Siltes arenosos	44	3181	2160	153	1021		
13	Siltes arenosos	50	3638	2454	162	1184		
14	Siltes arenosos	46	3611	2258	169	1353		
15	Siltes arenosos	50	3983	2454	176	1529		
16	Siltes arenosos	26	2980	1276	175	1704		
17	Siltes arenosos	50	4339	2454	181	1884		
17,22	Siltes arenosos	50	4380	2454	41	1925		

Tabela 40 - Cálculo de previsão de capacidade de carga – Método Décourt e Quaresma (1978)

Estaca 4, Obra 1 - Décourt e Quaresma (1978)

Fonte: Elaborada pelo próprio autor

A estaca número 4, localizada na obra 1, apresenta diâmetro de 500 mm e comprimento final de 10 metros. Na Tabela 41, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2168 kN.

Estaca 4, Obra 1 - Antunes e Cabrai (2000)								
Profundidade (m)	Tipo de solo	NSPT	R⊤ (kN)	R⊵ (kN)	R∟ (kN)	R∟ ACUMULADO (kN)		
1	Areia	4	182	157	25	25		
2	Areia	3	162	118	19	44		
3	Areia	6	317	236	38	82		
4	Areia	13	674	511	82	163		
5	Areia	12	710	471	75	239		
6	Areia	12	785	471	75	314		
7	Areia	50	1414	785	314	628		
8	Areia	44	1690	785	276	905		
9	Areia	34	1904	785	214	1118		
10	Areia	42	2168	785	264	1382		
11	Areia	50	2482	785	314	1696		
12	Areia	44	2758	785	276	1973		
13	Areia	50	3072	785	314	2287		
14	Areia	46	3362	785	289	2576		
15	Areia	50	3676	785	314	2890		
16	Areia	26	3839	785	163	3054		
17	Areia	50	4153	785	314	3368		
17,22	Areia	50	4222	785	69	3437		

Tabela 41 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000)

Estaca 4, Obra 1 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 4, localizada na obra 1, apresenta diâmetro de 500 mm e comprimento final de 10 metros. Na Tabela 42, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 1885 kN. Tabela 42 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos

Profundidade (m)	Tipo de solo	NSPT	R⊤ (kN)	R⊵ (kN)	R∟ (kN)	R∟ ACUMULADO (kN)
1	Areia	4	151	126	25	25
2	Areia	3	138	94	19	44
3	Areia	6	270	188	38	82
4	Areia	13	572	408	82	163
5	Areia	12	616	377	75	239
6	Areia	12	691	377	75	314
7	Areia	50	1131	503	314	628
8	Areia	44	1407	503	276	905
9	Areia	34	1621	503	214	1118
10	Areia	42	1885	503	264	1382
11	Areia	50	2199	503	314	1696
12	Areia	44	2476	503	276	1973
13	Areia	50	2790	503	314	2287
14	Areia	46	3079	503	289	2576
15	Areia	50	3393	503	314	2890
16	Areia	26	3556	503	163	3054
17	Areia	50	3870	503	314	3368
17,22	Areia	50	3940	503	69	3437

Estaca 3, Obra 1 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 5, localizada na obra 2, apresenta diâmetro de 600 mm e comprimento final de 12,4 metros. Na Tabela 43, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2148 kN.

Profundidade	Tino de solo	Мерт		RP	R∟	RL ACUMULADO		
(m)		11501	IXI (KIN)	(kN)	(kN)	(kN)		
1	Areia siltosa	4	212	200	13	13		
2	Areia siltosa	8	438	400	25	38		
3	Areia siltosa	9	516	450	28	66		
4	Areia siltosa	11	651	549	35	101		
5	Areia siltosa	21	1217	1049	66	168		
6	Areia siltosa	27	1602	1349	85	253		
7	Areia siltosa	19	1262	949	60	313		
8	Areia siltosa	18	1269	899	57	370		
9	Areia siltosa	16	1220	799	51	421		
10	Areia siltosa	12	1058	599	38	459		
11	Areia siltosa	18	1415	899	57	516		
12	Areia siltosa	14	1259	699	44	560		
12,4	Areia siltosa	31	2148	1548	39	599		
13	Areia siltosa	38	2569	1898	72	671		
14	Areia siltosa	50	3327	2498	158	829		
15	Areia siltosa	50	3485	2498	158	988		
16	Areia siltosa	45	3378	2248	142	1130		
17	Areia siltosa	33	2883	1648	104	1234		
18	Areia siltosa	26	2615	1299	82	1317		
19	Areia siltosa	12	1954	599	38	1355		
20	Areia siltosa	14	2098	699	44	1399		
21	Areia siltosa	21	2514	1049	66	1465		
22	Areia siltosa	32	3165	1598	101	1567		
	-	-						

Tabela 43 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975)

Estaca 5, Obra 2 - Aoki e Velloso (1975)

A estaca número 5, localizada na obra 2, apresenta diâmetro de 600 mm e comprimento final de 12,4 metros. Na Tabela 44, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3242 kN. Tabela 44 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983)

		•	,	•	-	
Profundidade	Tipo do colo	Nort			R∟	RL ACUMULADO
(m)	Tipo de solo	INSPI	R (KIN)	RP (KN)	(kN)	(kN)
1	Areia siltosa	4	321	302	19	19
2	Areia siltosa	8	660	603	38	57
3	Areia siltosa	9	779	679	43	100
4	Areia siltosa	11	982	829	53	153
5	Areia siltosa	21	1836	1583	100	253
6	Areia siltosa	27	2418	2036	129	382
7	Areia siltosa	19	1905	1433	91	473
8	Areia siltosa	18	1916	1357	86	559
9	Areia siltosa	16	1841	1206	76	635
10	Areia siltosa	12	1597	905	57	692
11	Areia siltosa	18	2136	1357	86	778
12	Areia siltosa	14	1901	1056	67	845
12,4	Areia siltosa	31	3242	2337	59	904
13	Areia siltosa	38	3878	2865	109	1013
14	Areia siltosa	50	5022	3770	239	1252
15	Areia siltosa	50	5261	3770	239	1491
16	Areia siltosa	45	5099	3393	215	1706
17	Areia siltosa	33	4351	2488	158	1863
18	Areia siltosa	26	3948	1960	124	1987
19	Areia siltosa	12	2950	905	57	2045
20	Areia siltosa	14	3167	1056	67	2112
21	Areia siltosa	21	3795	1583	100	2212
22	Areia siltosa	32	4777	2413	153	2365

Estaca 5, Obra 2 - Método de Aoki e Velloso (1975) - Modificado por Laprovitera (1988) e Benegas (1993)

Fonte: Elaborada pelo próprio autor

A estaca número 5, localizada na obra 2, apresenta diâmetro de 600 mm e comprimento final de 12,4 metros. Na Tabela 45, é possível identificar a capacidade de carga obtida pelo método semiempírico de Décourt e Quaresma (1978). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 4405 kN.

Estaca 5, Obra 2 - Decourt e Quaresina (1978)						
Profundidade	Tino de solo	Ngdt	Rτ	R₽	R∟	R∟ ACUMULADO
(m)	11p0 de 3010	11371	(kN)	(kN)	(kN)	(kN)
1	Areias	4	0	0	0	0
2	Areias	8	0	0	0	0
3	Areias	9	0	0	0	0
4	Areias	11	0	0	0	0
5	Areias	21	2460	2375	85	85
6	Areias	27	3242	3054	103	188
7	Areias	19	2445	2149	108	296
8	Areias	18	2442	2036	111	407
9	Areias	16	2328	1810	112	518
10	Areias	12	1985	1357	110	628
11	Areias	18	2776	2036	112	740
12	Areias	14	2435	1583	112	852
12,4	Areias	31	4405	3506	48	899
13	Areias	38	5275	4298	78	977
14	Areias	50	6775	5655	143	1120
15	Areias	50	6929	5655	155	1275
16	Areias	45	6527	5089	163	1438
17	Areias	33	5337	3732	167	1605
18	Areias	26	4713	2941	168	1772
19	Areias	12	3294	1357	164	1936
20	Areias	14	3681	1583	161	2098
21	Areias	21	4634	2375	161	2258
22	Areias	32	6041	3619	163	2422
23	Areias	32	6207	3619	166	2588
24	Areias	32	6375	3619	168	2755
25	Areias	32	6544	3619	170	2925
26	Areias	32	6716	3619	172	3097

Tabela 45 - Cálculo de previsão de capacidade de carga – Método Décourt e Quaresma (1978)

Estaca 5, Obra 2 - Décourt e Quaresma (1978)

A estaca número 5, localizada na obra 2, apresenta diâmetro de 600 mm e comprimento final de 12,4 metros. Na Tabela 46, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2559 kN. Tabela 46 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos.

Profundidade	Tino de solo	Ngdt	R⊤	Rp	R∟	R∟ ACUMULADO
(m)		INSFI	(kN)	(kN)	(kN)	(kN)
1	Areia	4	256	226	30	30
2	Areia	8	543	452	60	90
3	Areia	9	667	509	68	158
4	Areia	11	863	622	83	241
5	Areia	21	1531	1131	158	400
6	Areia	27	1734	1131	204	603
7	Areia	19	1821	1074	143	746
8	Areia	18	1900	1018	136	882
9	Areia	16	1908	905	121	1003
10	Areia	12	1772	679	90	1093
11	Areia	18	2247	1018	136	1229
12	Areia	14	2126	792	106	1335
12,4	Areia	31	2559	1131	93	1428
13	Areia	38	2731	1131	172	1600
14	Areia	50	3108	1131	377	1977
15	Areia	50	3485	1131	377	2354
16	Areia	45	3824	1131	339	2693
17	Areia	33	4073	1131	249	2942
18	Areia	26	4269	1131	196	3138
19	Areia	12	3907	679	90	3229
20	Areia	14	4126	792	106	3334
21	Areia	21	4623	1131	158	3492
22	Areia	32	4865	1131	241	3734

Estaca 5, Obra 2 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 5, localizada na obra 2, apresenta diâmetro de 600 mm e comprimento final de 12,4 metros. Na Tabela 47, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2916 kN. Tabela 47 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos

Profundidade	Tipo de solo	NSPT	RT	R _P	RL (I-NI)	
(m)			(KIN)	(KIN)	(KIN)	(KN)
1	Areia	4	320	283	38	38
2	Areia	8	679	565	75	113
3	Areia	9	834	636	85	198
4	Areia	11	1079	778	104	302
5	Areia	21	1630	1131	198	500
6	Areia	27	1885	1131	254	754
7	Areia	19	2064	1131	179	933
8	Areia	18	2234	1131	170	1103
9	Areia	16	2384	1131	151	1253
10	Areia	12	2215	848	113	1367
11	Areia	18	2667	1131	170	1536
12	Areia	14	2658	990	132	1668
12,4	Areia	31	2916	1131	117	1785
13	Areia	38	3131	1131	215	2000
14	Areia	50	3602	1131	471	2471
15	Areia	50	4073	1131	471	2942
16	Areia	45	4498	1131	424	3367
17	Areia	33	4809	1131	311	3678
18	Areia	26	5054	1131	245	3923
19	Areia	12	4884	848	113	4036
20	Areia	14	5157	990	132	4168
21	Areia	21	5497	1131	198	4366
22	Areia	32	5798	1131	302	4667

Estaca 5, Obra 2 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 6, localizada na obra 2, apresenta diâmetro de 600 mm e comprimento final de 11,7 metros. Na Tabela 48, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 1246 kN.

Estaca 6, Obra 2 - Aoki e venoso (1975)								
Profundidade (m)	Tipo de solo	NSPT	R⊤ (kN)	R⊵ (kN)	R∟ (kN)	R∟ ACUMULADO (kN)		
1	Areia siltosa	4	212	200	13	13		
2	Areia siltosa	8	438	400	25	38		
3	Areia siltosa	9	516	450	28	66		
4	Areia siltosa	11	651	549	35	101		
5	Areia siltosa	21	1217	1049	66	168		
6	Areia siltosa	27	1602	1349	85	253		
7	Areia siltosa	19	1262	949	60	313		
8	Areia siltosa	18	1269	899	57	370		
9	Areia siltosa	16	1220	799	51	421		
10	Areia siltosa	12	1058	599	38	459		
11	Areia siltosa	18	1415	899	57	516		
11,7	Areia siltosa	14	1246	699	31	547		
12	Areia siltosa	31	2125	1548	29	576		
13	Areia siltosa	38	2594	1898	120	696		
14	Areia siltosa	50	3352	2498	158	854		
15	Areia siltosa	50	3510	2498	158	1013		
16	Areia siltosa	45	3403	2248	142	1155		
17	Areia siltosa	33	2908	1648	104	1259		
18	Areia siltosa	26	2640	1299	82	1342		
19	Areia siltosa	12	1979	599	38	1380		
20	Areia siltosa	14	2123	699	44	1424		
21	Areia siltosa	21	2539	1049	66	1490		
22	Areia siltosa	32	3190	1598	101	1592		
23	Areia siltosa	32	3291	1598	101	1693		

Tabela 48 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975)

Estaca 6, Obra 2 - Aoki e Velloso (1975)

Fonte: Elaborada pelo próprio autor

A estaca número 6, localizada na obra 2, apresenta diâmetro de 600 mm e comprimento final de 11,7 metros. Na Tabela 49, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 1881 kN. Tabela 49 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983)

Profundidade	Tino do solo	Nont	Rτ	RP	R∟	RL ACUMULADO
(m)		INSPI	(kN)	(kN)	(kN)	(kN)
1	Areia siltosa	4	321	302	19	19
2	Areia siltosa	8	660	603	38	57
3	Areia siltosa	9	779	679	43	100
4	Areia siltosa	11	982	829	53	153
5	Areia siltosa	21	1836	1583	100	253
6	Areia siltosa	27	2418	2036	129	382
7	Areia siltosa	19	1905	1433	91	473
8	Areia siltosa	18	1916	1357	86	559
9	Areia siltosa	16	1841	1206	76	635
10	Areia siltosa	12	1597	905	57	692
11	Areia siltosa	18	2136	1357	86	778
11,7	Areia siltosa	14	1881	1056	47	825
12	Areia siltosa	31	3207	2337	44	870
13	Areia siltosa	38	3916	2865	181	1051
14	Areia siltosa	50	5060	3770	239	1290
15	Areia siltosa	50	5298	3770	239	1529
16	Areia siltosa	45	5136	3393	215	1743
17	Areia siltosa	33	4389	2488	158	1901
18	Areia siltosa	26	3986	1960	124	2025
19	Areia siltosa	12	2987	905	57	2082
20	Areia siltosa	14	3205	1056	67	2149
21	Areia siltosa	21	3833	1583	100	2250
22	Areia siltosa	32	4815	2413	153	2402
23	Areia siltosa	32	4968	2413	153	2555
24	Areia siltosa	32	5121	2413	153	2708
25	Areia siltosa	32	5274	2413	153	2861
26	Areia siltosa	32	5426	2413	153	3014

Estaca 6, Obra 2 - Método de Aoki e Velloso (1975) - Modificado por Laprovitera (1988) e Benegas (1993)

Fonte: Elaborada pelo próprio autor

A estaca número 6, localizada na obra 2, apresenta diâmetro de 600 mm e comprimento final de 11,7 metros. Na Tabela 50, é possível identificar a capacidade de carga obtida pelo método semiempírico de Décourt e Quaresma (1978). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2634 kN.

Estaca 6, Obra 2 - Décourt e Quaresma (1978)								
Profundidade	Tipo de solo	NSPT	RT	RP	R∟	RL ACUMULADO		
(m)		_	(kN)	(kN)	(kN)	(kN)		
1	Areias	4	496	452	44	44		
2	Areias	8	1005	905	57	101		
3	Areias	9	1181	1018	63	163		
4	Areias	11	1477	1244	69	232		
5	Areias	21	2693	2375	85	318		
6	Areias	27	3474	3054	103	421		
7	Areias	19	2677	2149	108	528		
8	Areias	18	2675	2036	111	639		
9	Areias	16	2560	1810	112	751		
10	Areias	12	2218	1357	110	861		
11	Areias	18	3008	2036	112	973		
11,70	Areias	14	2634	1583	78	1051		
12	Areias	31	4593	3506	36	1087		
13	Areias	38	5513	4298	129	1216		
14	Areias	50	7013	5655	143	1359		
15	Areias	50	7168	5655	155	1513		
16	Areias	45	6766	5089	163	1677		
17	Areias	33	5576	3732	167	1844		
18	Areias	26	4952	2941	168	2011		
19	Areias	12	3532	1357	164	2175		
20	Areias	14	3920	1583	161	2336		
21	Areias	21	4872	2375	161	2497		
22	Areias	32	6280	3619	163	2661		
23	Areias	32	6445	3619	166	2826		
24	Areias	32	6613	3619	168	2994		
25	Areias	32	6783	3619	170	3164		
26	Areias	32	6955	3619	172	3336		

Tabela 50 - Cálculo de previsão de capacidade de carga – Método Décourt e Quaresma (1978)

A estaca número 06, localizada na obra 2, apresenta diâmetro de 600 mm e comprimento final de 11,7 metros. Na Tabela 51, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2095 kN.

Tabela 51 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos

Profundidade	Tine de cele	NI	Rτ	RP	R∟	R∟ ACUMULADO
(m)	Tipo de solo	INSPT	(kN)	(kN)	(kN)	(kN)
1	Areia	4	256	226	30	30
2	Areia	8	543	452	60	90
3	Areia	9	667	509	68	158
4	Areia	11	863	622	83	241
5	Areia	21	1531	1131	158	400
6	Areia	27	1734	1131	204	603
7	Areia	19	1821	1074	143	746
8	Areia	18	1900	1018	136	882
9	Areia	16	1908	905	121	1003
10	Areia	12	1772	679	90	1093
11	Areia	18	2247	1018	136	1229
11,7	Areia	14	2095	792	74	1303
12	Areia	31	2504	1131	70	1373
13	Areia	38	2790	1131	287	1660
14	Areia	50	3167	1131	377	2037
15	Areia	50	3544	1131	377	2413
16	Areia	45	3884	1131	339	2753
17	Areia	33	4133	1131	249	3002
18	Areia	26	4329	1131	196	3198
19	Areia	12	3967	679	90	3288
20	Areia	14	4185	792	106	3394
21	Areia	21	4683	1131	158	3552
22	Areia	32	4924	1131	241	3793
23	Areia	32	5166	1131	241	4035
24	Areia	32	5407	1131	241	4276
25	Areia	32	5648	1131	241	4517
26	Areia	32	5889	1131	241	4758

Estaca 6, Obra 2 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 6, localizada na obra 2, apresenta diâmetro de 600 mm e comprimento final de 11,7 metros. Na Tabela 52, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando

coeficientes ß1 e ß2 máximos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2618 kN. Tabela 52 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos

Profundidade	Tino do colo	Nort	R⊤	RP	R∟	R∟ ACUMULADO
(m)	Tipo de solo	INSPI	(kN)	(kN)	(kN)	(kN)
1	Areia	4	320	283	38	38
2	Areia	8	679	565	75	113
3	Areia	9	834	636	85	198
4	Areia	11	1079	778	104	302
5	Areia	21	1630	1131	198	500
6	Areia	27	1885	1131	254	754
7	Areia	19	2064	1131	179	933
8	Areia	18	2234	1131	170	1103
9	Areia	16	2384	1131	151	1253
10	Areia	12	2215	848	113	1367
11	Areia	18	2667	1131	170	1536
11,7	Areia	14	2618	990	92	1629
12	Areia	31	2847	1131	88	1716
13	Areia	38	3205	1131	358	2074
14	Areia	50	3677	1131	471	2546
15	Areia	50	4148	1131	471	3017
16	Areia	45	4572	1131	424	3441
17	Areia	33	4883	1131	311	3752
18	Areia	26	5128	1131	245	3997
19	Areia	12	4958	848	113	4110
20	Areia	14	5232	990	132	4242
21	Areia	21	5571	1131	198	4440
22	Areia	32	5873	1131	302	4742
23	Areia	32	6174	1131	302	5043
24	Areia	32	6476	1131	302	5345
25	Areia	32	6777	1131	302	5646
26	Areia	32	7079	1131	302	5948

Estaca 6, Obra 2 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 7, localizada na obra 3, apresenta diâmetro de 600 mm e comprimento final de 20,96 metros. Na Tabela 53, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3902 kN.

Profundidade	Tino do solo	Nort	Rτ	RP	R∟	RL ACUMULADO
(m)		INSPI	(kN)	(kN)	(kN)	(kN)
1	Areia siltosa	3	159	150	9	9
2	Areia siltosa	4	222	200	13	22
3	Areia siltosa	6	341	300	19	41
4	Areia siltosa	5	307	250	16	57
5	Areia siltosa	11	641	549	35	92
6	Areia siltosa	16	942	799	51	142
7	Areia siltosa	12	780	599	38	180
8	Areia siltosa	12	818	599	38	218
9	Areia siltosa	26	1599	1299	82	301
10	Areia siltosa	27	1735	1349	85	386
11	Areia siltosa	20	1448	999	63	449
12	Areia siltosa	10	980	500	32	481
13	Areia argilossiltosa	8	918	400	37	518
14	Areia argilossiltosa	14	1283	699	65	583
15	Areia argilossiltosa	10	1130	500	47	630
16	Areia argilossiltosa	12	1285	599	56	686
17	Areia argilossiltosa	18	1669	899	84	770
18	Areia argilossiltosa	20	1862	999	93	863
19	Areia argilossiltosa	18	1846	899	84	947
20	Areia argilossiltosa	50	3678	2498	233	1180
20,96	Areia argilossiltosa	50	3902	2498	224	1404
21	Areia argilossiltosa	50	3911	2498	9	1413
22	Areia argilossiltosa	50	4144	2498	233	1646
23	Areia argilossiltosa	50	4601	2498	457	2103
24	Areia argilossiltosa	50	5282	2498	681	2784
25	Areia argilossiltosa	50	6186	2498	904	3688

Estaca 7, Obra 3 - Aoki e Velloso (1975)

Tabela 53 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975)

Fonte: Elaborada pelo próprio autor

A estaca número 7, localizada na obra 3, apresenta diâmetro de 600 mm e comprimento final de 20,96 metros. Na Tabela 54, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3953 kN. Tabela 54 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983)

Tipo de solo	NSPT	RT	RP	R∟	
	-	(kN)	(kN)	(kN)	(kN)
Areia siltosa	3	241	226	14	14
Areia siltosa	4	335	302	19	33
Areia siltosa	6	514	452	29	62
Areia siltosa	5	463	377	24	86
Areia siltosa	11	968	829	53	138
Areia siltosa	16	1421	1206	76	215
Areia siltosa	12	1177	905	57	272
Areia siltosa	12	1234	905	57	329
Areia siltosa	26	2414	1960	124	454
Areia siltosa	27	2618	2036	129	583
Areia siltosa	20	2186	1508	96	678
Areia siltosa	10	1480	754	48	726
Areia argilossiltosa	8	1138	377	35	761
Areia argilossiltosa	14	1482	660	62	823
Areia argilossiltosa	10	1338	471	44	867
Areia argilossiltosa	12	1485	565	53	919
Areia argilossiltosa	18	1847	848	79	999
Areia argilossiltosa	20	2029	942	88	1086
Areia argilossiltosa	18	2014	848	79	1166
Areia argilossiltosa	50	3742	2356	220	1386
Areia argilossiltosa	50	3953	2356	211	1597
Areia argilossiltosa	50	3962	2356	9	1605
Areia argilossiltosa	50	4182	2356	220	1825
Areia argilossiltosa	50	4613	2356	431	2256
Areia argilossiltosa	50	5255	2356	642	2899
Areia argilossiltosa	50	6108	2356	853	3752
	Tipo de solo Areia siltosa Areia argilossiltosa Areia argilossiltosa	Tipo de soloNSPTAreia siltosa3Areia siltosa4Areia siltosa6Areia siltosa11Areia siltosa11Areia siltosa12Areia siltosa12Areia siltosa26Areia siltosa27Areia siltosa20Areia siltosa10Areia siltosa10Areia siltosa10Areia siltosa10Areia siltosa10Areia argilossiltosa14Areia argilossiltosa12Areia argilossiltosa10Areia argilossiltosa10Areia argilossiltosa12Areia argilossiltosa50Areia argilossiltosa50<	Tipo de soloNSPTRT (kN)Areia siltosa3241Areia siltosa4335Areia siltosa6514Areia siltosa5463Areia siltosa11968Areia siltosa121421Areia siltosa121177Areia siltosa121234Areia siltosa262414Areia siltosa202186Areia siltosa202186Areia siltosa101480Areia siltosa101480Areia siltosa101338Areia argilossiltosa111482Areia argilossiltosa121485Areia argilossiltosa181847Areia argilossiltosa182014Areia argilossiltosa503953Areia argilossiltosa503962Areia argilossiltosa504613Areia argilossiltosa504613Areia argilossiltosa504613Areia argilossiltosa505255Areia argilossiltosa505255Areia argilossiltosa506108	Tipo de soloNSPTRT (KN)RP (KN)Areia siltosa3241226Areia siltosa4335302Areia siltosa6514452Areia siltosa5463377Areia siltosa11968829Areia siltosa1614211206Areia siltosa121177905Areia siltosa121234905Areia siltosa2624141960Areia siltosa2021861508Areia siltosa2021861508Areia siltosa101480754Areia siltosa101480754Areia siltosa101480565Areia argilossiltosa111485565Areia argilossiltosa121485565Areia argilossiltosa181847848Areia argilossiltosa182014848Areia argilossiltosa5039532356Areia argilossiltosa5039622356Areia argilossiltosa5039622356Areia argilossiltosa5046132356Areia argilossiltosa5046132356Areia argilossiltosa5052552356Areia argilossiltosa5046132356Areia argilossiltosa5052552356Areia argilossiltosa5052552356 <tr <td="">Areia argilossiltosa50<td< td=""><td>Tipo de soloNSPTRT (KN)RP (KN)RL (KN)Areia siltosa324122614Areia siltosa433530219Areia siltosa651445229Areia siltosa651445229Areia siltosa1046337724Areia siltosa1196882953Areia siltosa11120676Areia siltosa12117790557Areia siltosa12123490557Areia siltosa2624141960124Areia siltosa2726182036129Areia siltosa202186150896Areia siltosa10148075448Areia argilossiltosa11148266062Areia argilossiltosa11148256553Areia argilossiltosa12148556553Areia argilossiltosa18184784879Areia argilossiltosa18201484879Areia argilossiltosa5037422356210Areia argilossiltosa5039632356211Areia argilossiltosa5039632356211Areia argilossiltosa5039632356431Areia argilossiltosa5039632356431Areia argilossiltosa5046132356431<</td></td<></tr>	Tipo de soloNSPTRT (KN)RP (KN)RL (KN)Areia siltosa324122614Areia siltosa433530219Areia siltosa651445229Areia siltosa651445229Areia siltosa1046337724Areia siltosa1196882953Areia siltosa11120676Areia siltosa12117790557Areia siltosa12123490557Areia siltosa2624141960124Areia siltosa2726182036129Areia siltosa202186150896Areia siltosa10148075448Areia argilossiltosa11148266062Areia argilossiltosa11148256553Areia argilossiltosa12148556553Areia argilossiltosa18184784879Areia argilossiltosa18201484879Areia argilossiltosa5037422356210Areia argilossiltosa5039632356211Areia argilossiltosa5039632356211Areia argilossiltosa5039632356431Areia argilossiltosa5039632356431Areia argilossiltosa5046132356431<
Tipo de soloNSPTRT (KN)RP (KN)RL (KN)Areia siltosa324122614Areia siltosa433530219Areia siltosa651445229Areia siltosa651445229Areia siltosa1046337724Areia siltosa1196882953Areia siltosa11120676Areia siltosa12117790557Areia siltosa12123490557Areia siltosa2624141960124Areia siltosa2726182036129Areia siltosa202186150896Areia siltosa10148075448Areia argilossiltosa11148266062Areia argilossiltosa11148256553Areia argilossiltosa12148556553Areia argilossiltosa18184784879Areia argilossiltosa18201484879Areia argilossiltosa5037422356210Areia argilossiltosa5039632356211Areia argilossiltosa5039632356211Areia argilossiltosa5039632356431Areia argilossiltosa5039632356431Areia argilossiltosa5046132356431<					

Estaca 7, Obra 3 - Método de Aoki e Velloso (1975) - Modificado por Laprovitera (1988) e Benegas (1993)

Fonte: Elaborada pelo próprio autor

A estaca número 7, localizada na obra 3, apresenta diâmetro de 600 mm e comprimento final de 20,96 metros. Na Tabela 55, é possível identificar a capacidade de carga obtida pelo método semiempírico de Décourt e Quaresma (1978). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 7952 kN.

Profundidade	Tipo do colo	Nort		RP	R∟	R∟ ACUMULADO
(m)		INSPI	\mathbf{K} (KIN)	(kN)	(kN)	(kN)
1	Siltes argilosos	3	207	170	38	38
2	Siltes argilosos	45	2752	2545	170	207
3	Siltes argilosos	6	679	339	132	339
4	Siltes argilosos	5	734	283	112	451
5	Siltes argilosos	11	1180	622	107	558
6	Siltes argilosos	16	1571	905	109	667
7	Siltes argilosos	12	1452	679	107	773
8	Siltes argilosos	12	1557	679	105	879
9	Siltes argilosos	26	2463	1470	114	992
10	Siltes argilosos	27	2640	1527	121	1114
11	Siltes argilosos	20	2368	1131	123	1237
12	Siltes argilosos	10	1886	565	84	1321
13	Areias	8	2261	905	35	1356
14	Areias	14	3054	1583	115	1471
15	Areias	10	2715	1131	113	1584
16	Areias	12	3053	1357	112	1696
17	Areias	18	3845	2036	113	1809
18	Areias	20	4186	2262	115	1924
19	Areias	18	4076	2036	116	2040
20	Areias	50	7821	5655	127	2166
20,96	Areias	50	7952	5655	131	2297
21	Areias	50	7958	5655	6	2303
22	Areias	50	8112	5655	154	2457

Estaca 7, Obra 3 - Décourt e Quaresma (1978)

Tabela 55 - Cálculo de previsão de capacidade de carga – Método Décourt e Quaresma (1978)

Fonte: Elaborada pelo próprio autor

A estaca número 7, localizada na obra 3, apresenta diâmetro de 600 mm e comprimento final de 20,96 metros. Na Tabela 56, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3131 kN. Tabela 56 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos

Profundidade	Tino do colo	Nerr	Rτ	R₽	R∟	RL ACUMULADO
(m)	Tipo de solo	INSPT	(kN)	(kN)	(kN)	(kN)
1	Areia	7	449	396	53	53
2	Areia	4	309	226	30	83
3	Areia	6	467	339	45	128
4	Areia	5	449	283	38	166
5	Areia	11	871	622	83	249
6	Areia	16	1274	905	121	369
7	Areia	12	1139	679	90	460
8	Areia	12	1229	679	90	550
9	Areia	26	1877	1131	196	746
10	Areia	27	2081	1131	204	950
11	Areia	20	2232	1131	151	1101
12	Areia	10	1719	565	53	1154
13	Argila	8	1389	226	9	1163
14	Argila	14	1611	396	53	1215
15	Argila	10	1536	283	38	1253
16	Argila	12	1638	339	45	1298
17	Argila	18	1875	509	68	1366
18	Argila	20	2007	565	75	1442
19	Argila	50	2761	1131	188	1630
20	Argila	50	2950	1131	188	1819
20,96	Argila	50	3131	1131	181	2000
21	Argila	50	3138	1131	8	2007
22	Argila	50	3327	1131	188	2196
23	Argila	50	3515	1131	188	2384

Estaca 7, Obra 3 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 7, localizada na obra 3, apresenta diâmetro de 600 mm e comprimento final de 20,96 metros. Na Tabela 57, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3893 kN. Tabela 57 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos

Profundidade	Tino do colo	Nort	Rτ	R₽	R∟	R∟ ACUMULADO
(m)		INSPI	(kN)	(kN)	(kN)	(kN)
1	Areia	7	0	0	0	0
2	Areia	4	0	0	0	0
3	Areia	6	0	0	0	0
4	Areia	5	401	353	47	47
5	Areia	11	928	778	104	151
6	Areia	16	1433	1131	151	302
7	Areia	12	1263	848	113	415
8	Areia	12	1376	848	113	528
9	Areia	26	1904	1131	245	773
10	Areia	27	2158	1131	254	1027
11	Areia	20	2347	1131	188	1216
12	Areia	10	1989	707	66	1282
13	Argila	8	1637	339	16	1298
14	Argila	14	1984	594	92	1390
15	Argila	10	1880	424	66	1456
16	Argila	12	2044	509	79	1535
17	Argila	18	2417	763	119	1654
18	Argila	20	2634	848	132	1786
19	Argila	50	3247	1131	330	2116
20	Argila	50	3577	1131	330	2446
20,96	Argila	50	3893	1131	317	2762
21	Argila	50	3906	1131	13	2775
22	Argila	50	4236	1131	330	3105
24	Argila	50	4566	1131	330	3435

Estaca 7, Obra 3 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 8, localizada na obra 3, apresenta diâmetro de 600 mm e comprimento final de 20,56 metros. Na Tabela 58, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3808 kN.

		_			/	
Profundidade	Tipo de solo	Ngpt	R⊤	R₽	R∟	RL ACUMULADO
(m)			(kN)	(kN)	(kN)	(kN)
1	Areia siltosa	3	159	150	9	9
2	Areia siltosa	4	222	200	13	22
3	Areia siltosa	6	341	300	19	41
4	Areia siltosa	5	307	250	16	57
5	Areia siltosa	11	641	549	35	92
6	Areia siltosa	16	942	799	51	142
7	Areia siltosa	12	780	599	38	180
8	Areia siltosa	12	818	599	38	218
9	Areia siltosa	26	1599	1299	82	301
10	Areia siltosa	27	1735	1349	85	386
11	Areia siltosa	20	1448	999	63	449
12	Areia siltosa	10	980	500	32	481
13	Areia argilossiltosa	8	918	400	37	518
14	Areia argilossiltosa	14	1283	699	65	583
15	Areia argilossiltosa	10	1130	500	47	630
16	Areia argilossiltosa	12	1285	599	56	686
17	Areia argilossiltosa	18	1669	899	84	770
18	Areia argilossiltosa	20	1862	999	93	863
19	Areia argilossiltosa	18	1846	899	84	947
20	Areia argilossiltosa	50	3678	2498	233	1180
20,56	Areia argilossiltosa	50	3808	2498	131	1311
21	Areia argilossiltosa	50	3911	2498	103	1413
22	Areia argilossiltosa	50	4144	2498	233	1646
23	Areia argilossiltosa	50	4377	2498	233	1880

Tabela 58 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975)

Estaca 8, Obra 3 - Aoki e Velloso (1975)

A estaca número 8, localizada na obra 3, apresenta diâmetro de 600mm e comprimento final de 20,56 metros. Na Tabela 59, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3865,00 kN.

Tabela 59 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983)

Profundidade	The density		Rτ	RP	R∟	RL ACUMULADO
(m)	l ipo de solo	NSPT	(kN)	(kN)	(kN)	(kN)
1	Areia siltosa	3	241	226	14	14
2	Areia siltosa	4	335	302	19	33
3	Areia siltosa	6	514	452	29	62
4	Areia siltosa	5	463	377	24	86
5	Areia siltosa	11	968	829	53	138
6	Areia siltosa	16	1421	1206	76	215
7	Areia siltosa	12	1177	905	57	272
8	Areia siltosa	12	1234	905	57	329
9	Areia siltosa	26	2414	1960	124	454
10	Areia siltosa	27	2618	2036	129	583
11	Areia siltosa	20	2186	1508	96	678
12	Areia siltosa	10	1480	754	48	726
13	Areia argilossiltosa	8	1138	377	35	761
14	Areia argilossiltosa	14	1482	660	62	823
15	Areia argilossiltosa	10	1338	471	44	867
16	Areia argilossiltosa	12	1485	565	53	919
17	Areia argilossiltosa	18	1847	848	79	999
18	Areia argilossiltosa	20	2029	942	88	1086
19	Areia argilossiltosa	18	2014	848	79	1166
20	Areia argilossiltosa	50	3742	2356	220	1386
20,56	Areia argilossiltosa	50	3865	2356	123	1509
21	Areia argilossiltosa	50	3962	2356	97	1605
22	Areia argilossiltosa	50	4182	2356	220	1825
23	Areia argilossiltosa	50	4401	2356	220	2045

Estaca 8, Obra 3 - Método de Aoki e Velloso (1975) - Modificado por Laprovitera (1988) e Benegas (1993)

Fonte: Elaborada pelo próprio autor

A estaca número 8, localizada na obra 3, apresenta diâmetro de 600 mm e comprimento final de 20,56 metros. Na Tabela 60, é possível identificar a capacidade de carga obtida pelo método semiempírico de Décourt e Quaresma (1978). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 7070 kN.

Estaca 0, Obra 5 - Decourt e Quaresina (1970)								
Profundidade	Tipo de solo	NSPT	RT	RP	R∟	RL ACUMULADO		
(m)	1		(kN)	(kN)	(kN)	(kN)		
1	Siltes argilosos	3	0	0	0	0		
2	Siltes argilosos	4	0	0	0	0		
3	Siltes argilosos	6	0	0	0	0		
4	Siltes argilosos	5	0	0	0	0		
5	Siltes argilosos	11	677	622	55	55		
6	Siltes argilosos	16	1026	905	66	121		
7	Siltes argilosos	12	870	679	70	191		
8	Siltes argilosos	12	943	679	73	264		
9	Siltes argilosos	26	1820	1470	85	349		
10	Siltes argilosos	27	1972	1527	96	445		
11	Siltes argilosos	20	1676	1131	100	545		
12	Siltes argilosos	10	1179	565	69	614		
13	Areias	8	1547	905	29	643		
14	Areias	14	2323	1583	97	740		
15	Areias	10	1967	1131	96	836		
16	Areias	12	2289	1357	96	931		
17	Areias	18	3065	2036	98	1029		
18	Areias	20	3392	2262	101	1130		
19	Areias	18	3268	2036	102	1232		
20	Areias	50	7001	5655	114	1346		
20,56	Areias	50	7070	5655	70	1415		
21	Areias	50	7129	5655	59	1474		
22	Areias	50	7271	5655	142	1616		
23	Areias	50	7422	5655	150	1767		

Tabela 60 - Cálculo de previsão de capacidade de carga – Método Décourt e Quaresma (1978)

Estaca 8, Obra 3 - Décourt e Quaresma (1978)

A estaca número 8, localizada na obra 3, apresenta diâmetro de 600 mm e comprimento final de 20,56 metros. Na Tabela 61, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3055 kN. Tabela 61 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos

Profundidade	Tino do colo	Nee	R⊤	RP	R∟	R∟ ACUMULADO
(m)	Tipo de solo	INSPT	(kN)	(kN)	(kN)	(kN)
1	Areia	7	449	396	53	53
2	Areia	4	309	226	30	83
3	Areia	6	467	339	45	128
4	Areia	5	449	283	38	166
5	Areia	11	871	622	83	249
6	Areia	16	1274	905	121	369
7	Areia	12	1139	679	90	460
8	Areia	12	1229	679	90	550
9	Areia	26	1877	1131	196	746
10	Areia	27	2081	1131	204	950
11	Areia	20	2232	1131	151	1101
12	Areia	10	1719	565	53	1154
13	Argila	8	1389	226	9	1163
14	Argila	14	1611	396	53	1215
15	Argila	10	1536	283	38	1253
16	Argila	12	1638	339	45	1298
17	Argila	18	1875	509	68	1366
18	Argila	20	2007	565	75	1442
19	Argila	50	2761	1131	188	1630
20	Argila	50	2950	1131	188	1819
20,56	Argila	50	3055	1131	106	1924
21	Argila	50	3138	1131	83	2007
22	Argila	50	3327	1131	188	2196
23	Argila	50	3515	1131	188	2384

Estaca 8, Obra 3 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 8, localizada na obra 3, apresenta diâmetro de 600 mm e comprimento final de 20,56 metros. Na Tabela 62, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3921 kN. Tabela 62 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos

Profundidade	Tino do colo	Nort	R⊤	RP	R∟	R∟ ACUMULADO
(m)		INSPI	(kN)	(kN)	(kN)	(kN)
1	Areia	7	561	495	66	66
2	Areia	4	386	283	38	104
3	Areia	6	584	424	57	160
4	Areia	5	561	353	47	207
5	Areia	11	1089	778	104	311
6	Areia	16	1593	1131	151	462
7	Areia	12	1423	848	113	575
8	Areia	12	1536	848	113	688
9	Areia	26	2064	1131	245	933
10	Areia	27	2318	1131	254	1188
11	Areia	20	2507	1131	188	1376
12	Areia	10	2149	707	66	1442
13	Argila	8	1797	339	16	1458
14	Argila	14	2144	594	92	1550
15	Argila	10	2040	424	66	1616
16	Argila	12	2204	509	79	1695
17	Argila	18	2577	763	119	1814
18	Argila	20	2794	848	132	1946
19	Argila	50	3407	1131	330	2276
20	Argila	50	3737	1131	330	2606
20,56	Argila	50	3921	1131	185	2790
21	Argila	50	4067	1131	145	2936
22	Argila	50	4396	1131	330	3265
23	Argila	50	4726	1131	330	3595

Estaca 8, Obra 3 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 9, localizada na obra 4, apresenta diâmetro de 600 mm e comprimento final de 12,08 metros. Na Tabela 63, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3308 kN.

Estaca 9, Obra 4 - Aoki e Velloso (1975)									
Profundidade	Tino do colo	Neet	RT	R₽	R∟	RL ACUMULADO			
(m)		INSPI	(kN)	(kN)	(kN)	(kN)			
1	Areia	0	0	0	0	0			
2	Areia	0	0	0	0	0			
3	Areia	2	118	113	5	5			
4	Areia	3	183	170	8	13			
5	Areia	4	250	226	11	24			
6	Areia	4	261	226	11	34			
7	Areia	5	330	283	13	48			
8	Areia	24	1468	1357	63	111			
9	Areia	37	2301	2092	98	208			
10	Areia	29	1925	1640	77	285			
11	Areia	28	1942	1583	74	359			
12	Areia	42	2845	2375	111	470			
12,08	Areia	50	3308	2827	11	480			
13	Areia	50	3429	2827	121	602			
14	Areia	50	3561	2827	132	734			
15	Areia	50	3693	2827	132	866			

Tabela 63 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975)

A estaca número 9, localizada na obra 4, apresenta diâmetro de 600 mm e comprimento final de 12,08 metros. Na Tabela 64, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 5513 kN. Tabela 64 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983)

	•	```	,			
Profundidade	Tino de solo	Ngpt	R⊤ (kN)	R⊳ (kN)	R∟	R∟ ACUMULADO
(m)					(kN)	(kN)
1	Areia	0	0	0	0	0
2	Areia	0	0	0	0	0
3	Areia	2	197	188	9	9
4	Areia	3	305	283	13	22
5	Areia	4	417	377	18	40
6	Areia	4	434	377	18	57
7	Areia	5	550	471	22	79
8	Areia	24	2447	2262	106	185
9	Areia	37	3835	3487	163	347
10	Areia	29	3208	2733	128	475
11	Areia	28	3237	2639	123	598
12	Areia	42	4741	3958	185	783
12,08	Areia	50	5513	4712	18	800
13	Areia	50	5715	4712	202	1003
14	Areia	50	5935	4712	220	1223
15	Areia	50	6155	4712	220	1443

Estaca 9, Obra 4 - Método de Aoki e Velloso (1975) - Modificado por Laprovitera (1988) e Benegas (1993)

Fonte: Elaborada pelo próprio autor

A estaca número 9, localizada na obra 4, apresenta diâmetro de 600 mm e comprimento final de 12,08 metros. Na Tabela 65, é possível identificar a capacidade de carga obtida pelo método semiempírico de Décourt e Quaresma (1978). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2279 kN.

Estaca 9, Obra 4 - Décourt e Quaresma (1978)									
Profundidade	Tino do colo	Nont	Rτ	R₽	R∟	R∟ ACUMULADO			
(m)		INSPI	(kN)	(kN)	(kN)	(kN)			
1	Argilas	0	19	0	19	19			
2	Argilas	0	38	0	19	38			
3	Argilas	2	129	68	23	61			
4	Argilas	3	189	102	27	87			
5	Argilas	4	253	136	30	118			
6	Argilas	4	286	136	32	150			
7	Argilas	5	355	170	35	185			
8	Argilas	24	1051	814	52	237			
9	Argilas	37	1566	1255	74	311			
10	Argilas	29	1382	984	87	398			
11	Argilas	28	1444	950	97	494			
12	Argilas	42	1998	1425	78	573			
12,08	Argilas	50	2279	1696	10	583			
13	Argilas	50	2411	1696	132	715			
14	Argilas	50	2568	1696	156	871			
15	Argilas	50	2735	1696	167	1039			

Tabela 65 - Cálculo de previsão de capacidade de carga – Método Décourt e Quaresma (1978)

A estaca número 9, localizada na obra 4, apresenta diâmetro de 600 mm e comprimento final de 12,08 metros. Na Tabela 66, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2503 kN.

Tabela 66 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos

Profundidade		Ner	Rτ	R₽	R∟	R∟ ACUMULADO
(m)		INSPI	(kN)	(kN)	(kN)	(kN)
1	Areia	0	0	0	0	0
2	Areia	0	0	0	0	0
3	Areia	2	128	113	15	15
4	Areia	3	207	170	23	38
5	Areia	4	294	226	30	68
6	Areia	4	324	226	30	98
7	Areia	5	418	283	38	136
8	Areia	24	1448	1131	181	317
9	Areia	37	1727	1131	279	596
10	Areia	29	1945	1131	219	814
11	Areia	28	2156	1131	211	1025
12	Areia	42	2473	1131	317	1342
12,08	Areia	50	2503	1131	30	1372
13	Areia	50	2850	1131	347	1719
14	Areia	50	3227	1131	377	2096
15	Areia	50	3604	1131	377	2473

Estaca 9, Obra 4 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 9, localizada na obra 4, apresenta diâmetro de 600 mm e comprimento final de 12,08 metros. Na Tabela 67, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 22846 kN. Tabela 67 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos

Profundidade		NI	Rτ	RP	R∟	RL ACUMULADO
(m)	Tipo de solo	INSPT	(kN)	(kN)	(kN)	(kN)
1	Areia	0	0	0	0	0
2	Areia	0	0	0	0	0
3	Areia	2	160	141	19	19
4	Areia	3	259	212	28	47
5	Areia	4	368	283	38	85
6	Areia	4	405	283	38	123
7	Areia	5	523	353	47	170
8	Areia	24	1527	1131	226	396
9	Areia	37	1876	1131	349	745
10	Areia	29	2149	1131	273	1018
11	Areia	28	2413	1131	264	1282
12	Areia	42	2809	1131	396	1678
12,08	Areia	50	2846	1131	38	1715
13	Areia	50	3280	1131	434	2149
14	Areia	50	3751	1131	471	2620
15	Areia	50	4222	1131	471	3091

Estaca 9, Obra 4 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 10, localizada na obra 4, apresenta diâmetro de 600 mm e comprimento final de 11,12 metros. Na Tabela 68, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3422 kN.

Tino do solo	Nort	R⊤	R₽	R∟	R∟ ACUMULADO				
	INSPI	(kN)	(kN)	(kN)	(kN)				
Areia siltoargilosa	2	108	100	8	8				
Areia siltoargilosa	2	116	100	8	16				
Areia siltoargilosa	0	16	0	0	16				
Areia siltoargilosa	2	124	100	8	24				
Areia siltoargilosa	2	132	100	8	32				
Areia siltoargilosa	5	302	250	20	52				
Areia siltoargilosa	38	2102	1898	152	204				
Areia	25	1683	1414	66	270				
Areia	39	2578	2205	103	373				
Areia	28	2030	1583	74	447				
Areia	50	3406	2827	132	579				
Areia	50	3422	2827	16	594				
Areia	50	3538	2827	116	710				
Areia	50	3670	2827	132	842				
Areia	50	3802	2827	132	974				
	Tipo de solo Areia siltoargilosa Areia siltoargilosa Areia siltoargilosa Areia siltoargilosa Areia siltoargilosa Areia siltoargilosa Areia Areia Areia Areia Areia Areia Areia Areia Areia Areia Areia Areia	Tipo de soloNsptAreia siltoargilosa2Areia siltoargilosa2Areia siltoargilosa2Areia siltoargilosa2Areia siltoargilosa2Areia siltoargilosa2Areia siltoargilosa2Areia siltoargilosa38Areia siltoargilosa38Areia39Areia25Areia50Areia50Areia50Areia50Areia50Areia50Areia50Areia50Areia50Areia50Areia50Areia50	Tipo de soloNSPTRT (kN)Areia siltoargilosa2108Areia siltoargilosa2116Areia siltoargilosa016Areia siltoargilosa2124Areia siltoargilosa2132Areia siltoargilosa2132Areia siltoargilosa5302Areia siltoargilosa5302Areia siltoargilosa382102Areia392578Areia392578Areia503406Areia503538Areia503670Areia503802	Tipo de solo Nspt Rt (kN) Rp (kN) Areia siltoargilosa 2 108 100 Areia siltoargilosa 2 116 100 Areia siltoargilosa 2 116 100 Areia siltoargilosa 2 124 100 Areia siltoargilosa 2 132 100 Areia siltoargilosa 2 132 100 Areia siltoargilosa 5 302 250 Areia siltoargilosa 5 302 250 Areia siltoargilosa 38 2102 1898 Areia 39 2578 2205 Areia 39 2578 2205 Areia 50 3406 2827 Areia 50 3422 2827 Areia 50 3670 2827 Areia 50 3670 2827 Areia 50 3670 2827	Tipo de solo Nspt Rt (kN) Rp (kN) RL (kN) Areia siltoargilosa 2 108 100 8 Areia siltoargilosa 2 116 100 8 Areia siltoargilosa 2 116 100 8 Areia siltoargilosa 0 16 0 0 Areia siltoargilosa 2 132 100 8 Areia siltoargilosa 2 132 100 8 Areia siltoargilosa 2 132 100 8 Areia siltoargilosa 5 302 250 20 Areia siltoargilosa 38 2102 1898 152 Areia 39 2578 2205 103 Areia 39 2578 2205 103 Areia 50 3406 2827 132 Areia 50 3422 2827 16 Areia 50 3670 2827 132 Areia				

Tabela 68 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975)

Estaca 10, Obra 4 - Aoki e Velloso (1975)

A estaca número 10, localizada na obra 4, apresenta diâmetro de 600 mm e comprimento final de 11,12 metros. Na Tabela 69, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 5632 kN. Tabela 69 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983)

			- J		- /	-
Profundidade	Tino do colo	Nort	R⊤	RP	R∟	RL ACUMULADO
(m)		INSPI	(kN)	(kN)	(kN)	(kN)
1	Areia siltoargilosa	2	143	132	11	11
2	Areia siltoargilosa	2	153	132	11	21
3	Areia siltoargilosa	0	21	0	0	21
4	Areia siltoargilosa	2	164	132	11	32
5	Areia siltoargilosa	2	174	132	11	42
6	Areia siltoargilosa	5	398	330	26	69
7	Areia siltoargilosa	38	2776	2507	201	269
8	Areia	25	2735	2356	110	379
9	Areia	39	4226	3676	172	551
10	Areia	28	3313	2639	123	674
11	Areia	50	5606	4712	220	894
11,12	Areia	50	5632	4712	26	920
12	Areia	50	5826	4712	194	1114
13	Areia	50	6046	4712	220	1334
14	Areia	50	6266	4712	220	1553

Estaca 10, Obra 4 - Método de Aoki e Velloso (1975) - Modificado por Laprovitera (1988) e Benegas (1993)

Fonte: Elaborada pelo próprio autor

A estaca número 10, localizada na obra 4, apresenta diâmetro de 600 mm e comprimento final de 11,12 metros. Na Tabela 70, é possível identificar a capacidade de carga obtida pelo método semiempírico de Décourt e Quaresma (1978). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2374 kN.

Profundidade (m) Tipo de solo NSPT RT (kN) RP (kN) RL (kN) RL ACUMULAE (kN) 1 Siltes arenosos 2 173 141 31 31 2 Siltes arenosos 2 204 141 31 63 3 Siltes arenosos 0 90 0 27 90 4 Siltes arenosos 2 260 141 28 118 5 Siltes arenosos 2 289 141 29 147 6 Siltes arenosos 5 533 353 32 180 7 Siltes arenosos 38 2930 2686 65 244 8 Argilas 25 1171 848 79 323 9 Argilas 39 1745 1323 99 422										
(m)Hp0 de soloHsP1H1 (KN)(kN)(kN)(kN)1Siltes arenosos217314131312Siltes arenosos220414131633Siltes arenosos090027904Siltes arenosos2260141281185Siltes arenosos2289141291476Siltes arenosos5533353321807Siltes arenosos3829302686652448Argilas251171848793239Argilas391745132399422	Profundidade	Tipo de solo	Nept		RP	R∟	R∟ ACUMULADO			
1Siltes arenosos217314131312Siltes arenosos220414131633Siltes arenosos090027904Siltes arenosos2260141281185Siltes arenosos2289141291476Siltes arenosos5533353321807Siltes arenosos3829302686652448Argilas251171848793239Argilas391745132399422	(m)		INSPI		(kN)	(kN)	(kN)			
2 Siltes arenosos 2 204 141 31 63 3 Siltes arenosos 0 90 0 27 90 4 Siltes arenosos 2 260 141 28 118 5 Siltes arenosos 2 289 141 29 147 6 Siltes arenosos 5 533 353 32 180 7 Siltes arenosos 38 2930 2686 65 244 8 Argilas 25 1171 848 79 323 9 Argilas 39 1745 1323 99 422	1	Siltes arenosos	2	173	141	31	31			
3 Siltes arenosos 0 90 0 27 90 4 Siltes arenosos 2 260 141 28 118 5 Siltes arenosos 2 289 141 29 147 6 Siltes arenosos 5 533 353 32 180 7 Siltes arenosos 38 2930 2686 65 244 8 Argilas 25 1171 848 79 323 9 Argilas 39 1745 1323 99 422	2	Siltes arenosos	2	204	141	31	63			
4Siltes arenosos2260141281185Siltes arenosos2289141291476Siltes arenosos5533353321807Siltes arenosos3829302686652448Argilas251171848793239Argilas391745132399422	3	Siltes arenosos	0	90	0	27	90			
5 Siltes arenosos 2 289 141 29 147 6 Siltes arenosos 5 533 353 32 180 7 Siltes arenosos 38 2930 2686 65 244 8 Argilas 25 1171 848 79 323 9 Argilas 39 1745 1323 99 422	4	Siltes arenosos	2	260	141	28	118			
6Siltes arenosos5533353321807Siltes arenosos3829302686652448Argilas251171848793239Argilas391745132399422	5	Siltes arenosos	2	289	141	29	147			
7 Siltes arenosos 38 2930 2686 65 244 8 Argilas 25 1171 848 79 323 9 Argilas 39 1745 1323 99 422	6	Siltes arenosos	5	533	353	32	180			
8Argilas251171848793239Argilas391745132399422	7	Siltes arenosos	38	2930	2686	65	244			
9 Argilas 39 1745 1323 99 422	8	Argilas	25	1171	848	79	323			
	9	Argilas	39	1745	1323	99	422			
10 Argilas 28 1481 950 109 531	10	Argilas	28	1481	950	109	531			
11 Argilas 50 2356 1696 129 660	11	Argilas	50	2356	1696	129	660			
11,12 Argilas 50 2374 1696 18 677	11,12	Argilas	50	2374	1696	18	677			
12 Argilas 50 2515 1696 141 819	12	Argilas	50	2515	1696	141	819			
13 Argilas 50 2688 1696 173 991	13	Argilas	50	2688	1696	173	991			
14 Argilas 50 2871 1696 183 1175	14	Argilas	50	2871	1696	183	1175			

Tabela 70 - Cálculo de previsão de capacidade de carga – Método Décourt e Quaresma (1978)

Estaca 10, Obra 4 - Décourt e Quaresma (1978)

A estaca número 10, localizada na obra 4, apresenta diâmetro de 600 mm e comprimento final de 11,12 metros. Na Tabela 71, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 2631 kN. Tabela 71 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos

Profundidade	Tipo de	Nort		R₽		R∟ ACUMULADO (kN)	
(m)	solo	INSPI		(kN)	RL (KIN)		
1	Areia	2	128	113	15	15	
2	Areia	2	143	113	15	30	
3	Areia	0	30	0	0	30	
4	Areia	2	158	113	15	45	
5	Areia	2	173	113	15	60	
6	Areia	5	381	283	38	98	
7	Areia	38	1516	1131	287	385	
8	Areia	25	1704	1131	188	573	
9	Areia	39	1998	1131	294	867	
10	Areia	28	2209	1131	211	1078	
11	Areia	50	2586	1131	377	1455	
11,12	Areia	50	2631	1131	45	1500	
12	Areia	50	2963	1131	332	1832	
13	Areia	50	3295	1131	332	2164	
14	Areia	50	3627	1131	332	2496	

Estaca 10, Obra 4 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 10, localizada na obra 4, apresenta diâmetro de 600 mm e comprimento final de 11,12 metros. Na Tabela 72, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3007 kN. Tabela 72 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos

Profundidade	Tipo de	NSPT	R⊤ (kN)	R₽	R⊨(kN)	R⊢ACUMULADO (kN)	
(m)	solo		()	(kN)	()		
1	Areia	2	160	141	19	19	
2	Areia	2	179	141	19	38	
3	Areia	0	38	0	0	38	
4	Areia	2	198	141	19	57	
5	Areia	2	217	141	19	75	
6	Areia	5	476	353	47	123	
7	Areia	38	1612	1131	358	481	
8	Areia	25	1847	1131	236	716	
9	Areia	39	2215	1131	368	1084	
10	Areia	28	2479	1131	264	1348	
11	Areia	50	2950	1131	471	1819	
11,12	Areia	50	3007	1131	57	1876	
12	Areia	50	3421	1131	415	2290	
13	Areia	50	3836	1131	415	2705	
14	Areia	50	4251	1131	415	3120	

Estaca 10, Obra 4 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 10, localizada na obra 4, apresenta diâmetro de 500 mm e comprimento final de 14,72 metros. Na Tabela 73, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3179 kN.

Estaca 11, Obra 5 - Aoki e Velloso (1975)									
Profundidade	Tipo do solo	Nort	R⊤	R₽	R∟	RL ACUMULADO			
(m)		INSPI	(kN)	(kN)	(kN)	(kN)			
1	Areia argilosa	6	233	208	25	25			
2	Areia argilosa	4	180	139	17	42			
3	Areia argilosa	4	197	139	17	58			
4	Areia argilosa	3	175	104	12	71			
5	Areia argilosa	6	304	208	25	96			
6	Areia argilosa	4	251	139	17	112			
7	Areia argilosa	4	268	139	17	129			
8	Areia argilosa	7	401	243	29	158			
9	Areia argilosa	23	1052	798	96	254			
10	Areia argilosa	50	2196	1734	208	462			
11	Areia argilosa	50	2405	1734	208	670			
12	Areia argilosa	50	2613	1734	208	878			
13	Areia argilosa	50	2821	1734	208	1086			
14	Areia argilosa	50	3029	1734	208	1295			
14,72	Areia argilosa	50	3179	1734	150	1444			
15	Areia argilosa	50	3237	1734	58	1503			
16	Areia argilosa	50	3445	1734	208	1711			
17	Areia argilosa	50	3653	1734	208	1919			
18	Areia argilosa	50	3862	1734	208	2127			
19	Areia argilosa	50	4070	1734	208	2335			
20	Areia argilosa	50	4278	1734	208	2543			

Tabela 73 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975)

Estaca 11, Obra 5 - Aoki e Velloso (1975)

A estaca número 10, localizada na obra 4, apresenta diâmetro de 500 mm e comprimento final de 14,72 metros. Na Tabela 74, é possível identificar a capacidade de carga obtida pelo método semiempírico de Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3599 kN. Tabela 74 - Cálculo de previsão de capacidade de carga – Método Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983)

Profundidade	The deside					RL ACUMULADO
(m)	l lipo de solo	NSPT	R⊤ (KN)	RP (KN)	R∟ (KN)	(kN)
1	Areia argilosa	6	264	236	28	28
2	Areia argilosa	4	204	157	19	47
3	Areia argilosa	4	223	157	19	66
4	Areia argilosa	3	198	118	14	80
5	Areia argilosa	6	344	236	28	108
6	Areia argilosa	4	284	157	19	127
7	Areia argilosa	4	303	157	19	146
8	Areia argilosa	7	454	275	33	179
9	Areia argilosa	23	1191	903	108	287
10	Areia argilosa	50	2487	1963	236	523
11	Areia argilosa	50	2722	1963	236	759
12	Areia argilosa	50	2958	1963	236	994
13	Areia argilosa	50	3193	1963	236	1230
14	Areia argilosa	50	3429	1963	236	1466
14,72	Areia argilosa	50	3599	1963	170	1635
15	Areia argilosa	50	3665	1963	66	1701
16	Areia argilosa	50	3900	1963	236	1937
17	Areia argilosa	50	4136	1963	236	2172
18	Areia argilosa	50	4372	1963	236	2408
19	Areia argilosa	50	4607	1963	236	2644
20	Areia argilosa	50	4843	1963	236	2879

Estaca 11, Obra 5 - Método de Aoki e Velloso (1975) - Modificado por Laprovitera (1988) e Benegas (1993)

Fonte: Elaborada pelo próprio autor

A estaca número 10, localizada na obra 4, apresenta diâmetro de 500 mm e comprimento final de 14,72 metros. Na Tabela 75, é possível identificar a capacidade de carga obtida pelo método semiempírico de Décourt e Quaresma (1978). Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 5189 kN.
Lotaca II, Obia 5 - Decourt e Quareonia (1970)									
Profundidade	Tipo de solo	Nedt		R₽	R∟	RL ACUMULADO			
(m)		INSPI	IXI (KIN)	(kN)	(kN)	(kN)			
1	Areias	6	518	471	47	47			
2	Areias	45	3731	3534	149	196			
3	Areias	4	622	314	112	308			
4	Areias	3	635	236	92	400			
5	Areias	6	954	471	83	482			
6	Areias	4	872	314	75	557			
7	Areias	4	941	314	70	627			
8	Areias	7	1244	550	67	694			
9	Areias	23	2576	1806	75	769			
10	Areias	50	4792	3927	95	865			
11	Areias	50	4904	3927	112	977			
12	Areias	50	4919	3927	15	992			
13	Areias	50	5040	3927	121	1113			
14	Areias	50	5146	3927	106	1219			
14,72	Areias	50	5189	3927	44	1262			
15	Areias	50	5353	3927	164	1426			
16	Areias	50	5523	3927	170	1596			
17	Areias	50	5700	3927	176	1773			
18	Areias	50	5881	3927	182	1954			
19	Areias	50	6068	3927	186	2141			
20	Areias	50	6258	3927	191	2331			

Tabela 75 - Cálculo de previsão de capacidade de carga – Método Décourt e Quaresma (1978)

Estaca 11, Obra 5 - Décourt e Quaresma (1978)

Fonte: Elaborada pelo próprio autor

A estaca número 10, localizada na obra 4, apresenta diâmetro de 500 mm e comprimento final de 14,72 metros. Na Tabela 76, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3966 kN. Tabela 76 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos

Drofundidada	,		D-	Do	D,	
Profundidade	Tipo de solo	NSPT	RI	RP	RL	
(m)			(kN)	(kN)	(kN)	(kN)
1	Areia	6	273	236	38	38
2	Areia	4	220	157	25	63
3	Areia	4	245	157	25	88
4	Areia	3	225	118	19	107
5	Areia	6	380	236	38	145
6	Areia	4	327	157	25	170
7	Areia	4	352	157	25	195
8	Areia	7	514	275	44	239
9	Areia	23	1169	785	145	383
10	Areia	50	1483	785	314	697
11	Areia	50	1797	785	314	1012
12	Areia	50	2111	785	314	1326
13	Areia	50	2425	785	314	1640
14	Areia	50	2739	785	314	1954
14,72	Areia	50	2966	785	226	2180
15	Areia	50	3054	785	88	2268

Estaca 11, Obra 5 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

A estaca número 10, localizada na obra 4, apresenta diâmetro de 500 mm e comprimento final de 14,72 metros. Na Tabela 77, é possível identificar a capacidade de carga obtida pelo método semiempírico de Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos. Com base nos resultados do ensaio de SPT, Tabela 13 e as Tabelas 3 e 4, foi possível estimar a capacidade de carga em 3511 kN. Tabela 77 - Cálculo de previsão de capacidade de carga – Método Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos

	,					
Profundidade		Nept	Rτ	R₽	R∟	R∟ ACUMULADO
(m)		INSPI	(kN)	(kN)	(kN)	(kN)
1	Areia	6	342	295	47	47
2	Areia	4	275	196	31	79
3	Areia	4	306	196	31	110
4	Areia	3	281	147	24	134
5	Areia	6	475	295	47	181
6	Areia	4	408	196	31	212
7	Areia	4	440	196	31	243
8	Areia	7	642	344	55	298
9	Areia	23	1264	785	181	479
10	Areia	50	1657	785	393	872
11	Areia	50	2050	785	393	1264
12	Areia	50	2443	785	393	1657
13	Areia	50	2835	785	393	2050
14	Areia	50	3228	785	393	2443
14,72	Areia	50	3511	785	283	2725
15	Areia	50	3621	785	110	2835

Estaca 11, Obra 5 - Antunes e Cabral (2000)

Fonte: Elaborada pelo próprio autor

No método de Antunes e Cabral (2000), também é possível desenvolver os cálculos de estimativa de capacidade de carga para valores médios de ß1 e ß2, obtendo os valores apresentados na Tabela 78, objetivando visualizar a tendência dos valores estimados em relação ao uso de coeficientes mínimos e máximos.

Tabela 78 - Resumo dos valores estimados de capacidade de carga nos métodos

Estaca	Estaca	Estaca	Estaca	Estaca	Estaca	Estaca	Estaca	Estaca	Estaca	Estaca	Estaca
	1	2	3	4	5	6	7	8	9	10	11
Estimativa de Carga (kN)	2363	3111	1747	2340	2738	2356	3448	3488	2675	2819	3238

Fonte: Elaborada pelo próprio autor

De posse de todos esses dados de estimativa de prova de carga pelos métodos acima relacionados, é possível elaborar a Tabela 79, que mostra o resumo das cargas estimadas para cada uma das onze estacas.

Na Tabela 79, os códigos seguem as seguintes abreviações, Aoki e Velloso (1975), representado por AV (1975), Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983), AV (1975) - LB(1978, 1983), Décourt e

Quaresma, DQ (1978), Antunes e Cabral (2000) por coeficientes mínimos, AC (2000) - MN, Antunes e Cabral (2000) por coeficientes médios, AC (2000) - MD e Antunes e Cabral (2000) por coeficientes máximos, AC (2000) - MX.

ESTACA	AV (1975)	AV (1975) - LB (1978, 1983)	DQ (1978)	AC (2000) - MN	AC (2000) - MD	AC (2000) - MX
1	2021	2177	3265	2156	2363	2570
2	2840	3082	4867	2853	3111	3369
3	1533	2453	2691	1608	1747	1885
4	2247	3617	4023	2168	2340	2513
5	2148	3242	4405	2559	2738	2916
6	1246	1881	2634	2095	2356	2618
7	3902	3953	7952	3131	3448	3893
8	3808	3865	7070	3055	3488	3921
9	3308	5513	2279	2503	2675	2846
10	3422	5632	2374	2631	2819	3007
11	3179	3599	5189	2966	3238	3511

Tabela 79 - Resumo dos valores estimados de capacidade de carga nos métodos

Fonte: Elaborada pelo próprio autor

4.2 Interpretação das provas de carga

A extrapolação da prova de carga foi realizada a partir da metodologia de Décourt (1996). A partir da interpretação da curva carga vs recalque extrapolada, adotou-se o critério de deslocamento de 10% do diâmetro para obter a carga de ruptura convencionada (CEN, 2004).

A Figura 26 apresenta a extrapolação da curva carga vs recalque pelo método de Décourt (1996) da estaca 1 até 40 mm, equivalente a 10% do diâmetro da estaca, obtendo carga de 2.492 kN.

Figura 26 - Extrapolação da curva carga x recalque pelo método de Décourt (1996)

A Figura 27 apresenta a extrapolação da curva carga vs recalque pelo método de Décourt (1996) da estaca 2 até 50 mm, equivalente a 10% do diâmetro da estaca, obtendo carga de 3.957 kN.

Figura 27 - Extrapolação da curva carga x recalque pelo método de Décourt (1996)

A Figura 28 apresenta a extrapolação da curva carga vs recalque pelo método de Décourt (1996) da estaca 3 até 40 mm, equivalente a 10% do diâmetro da estaca, obtendo carga de 2.272 kN.

Figura 28 - Extrapolação da curva carga x recalque pelo método de Décourt (1996)

A Figura 29 apresenta a extrapolação da curva carga vs recalque pelo método de Décourt (1996) da estaca 4 até 50 mm, equivalente a 10% do diâmetro da estaca, obtendo carga de 2.469 kN.

Figura 29 - Extrapolação da curva carga x recalque pelo método de Décourt (1996)

A Figura 30 apresenta a extrapolação da curva carga vs recalque pelo método de Décourt (1996) da estaca 5 até 60 mm, equivalente a 10% do diâmetro da estaca, obtendo carga de 4.529 kN.

Figura 30 - Extrapolação da curva carga x recalque pelo método de Décourt (1996)

Fonte: Elaborada pelo próprio autor

A Figura 31 apresenta a extrapolação da curva carga vs recalque pelo método de Décourt (1996) da estaca 6 até 60 mm, equivalente a 10% do diâmetro da estaca, obtendo carga de 3.918 kN.

Figura 31 - Extrapolação da curva carga x recalque pelo método de Décourt (1996)

A Figura 32 apresenta a extrapolação da curva carga vs recalque pelo método de Décourt (1996) da estaca 7 até 60 mm, equivalente a 10% do diâmetro da estaca, obtendo carga de 3.985 kN.

Figura 32 - Extrapolação da curva carga x recalque pelo método de Décourt (1996)

A Figura 33 apresenta a extrapolação da curva carga vs recalque pelo método de Décourt (1996) da estaca 8 até 60 mm, equivalente a 10% do diâmetro da estaca, obtendo carga de 3.844 kN.

Fonte: Elaborada pelo próprio autor

Fonte: Elaborada pelo próprio autor

A Figura 34 apresenta a extrapolação da curva carga vs recalque pelo método de Décourt (1996) da estaca 9 até 60 mm, equivalente a 10% do diâmetro da estaca, obtendo carga de 5.286 kN.

Figura 34 - Extrapolação da curva carga x recalque pelo método de Décourt (1996)

Fonte: Elaborada pelo próprio autor

A Figura 35 apresenta a extrapolação da curva carga vs recalque pelo método de Décourt (1996) da estaca 10 até 60 mm, equivalente a 10% do diâmetro da estaca, obtendo carga de 3.628 kN.

Figura 35 - Extrapolação da curva carga x recalque pelo método de Décourt (1996)

Fonte: Elaborada pelo próprio autor

A Figura 36 apresenta a extrapolação da curva carga vs recalque pelo método de Décourt (1996) da estaca 11 até 50 mm, equivalente a 10% do diâmetro da estaca, obtendo carga de 3.403 kN.

Figura 36 - Extrapolação da curva carga x recalque pelo método de Décourt (1996)

Fonte: Elaborada pelo próprio autor

A Tabela 80 apresenta os valores de carga de ruptura convencionadas a partir do critério do Eurocode 7 (CEN, 2004), para todas as onze estacas analisadas, no momento em que atinge o recalque equivalente a 10% do diâmetro. Tabela 80 - Valores de carga de ruptura convencionadas por Eurocode 7 (CEN, 2004)

ESTACA	CARGA DE RUPTURA CONVENCIONADA (kN)
1	2492
2	3957
3	2272
4	2469
5	4529
6	3918
7	3985
8	3844
9	5286
10	3628
11	3403

Fonte: Elaborada pelo próprio autor

Os dados de carga de ruptura convencionadas, são comparados os resultados da carga de ruptura convencionadas aos valores obtidos pela estimativa de capacidade de carga para cada um dos quatro métodos analisados.

A Figura 37 apresenta a distribuição de valores de carga de ruptura convencionada (Qm) e a estimativa da capacidade de carga (Qp) pelo método de Aoki e Velloso (1975) para as estacas avaliadas na pesquisa.

Figura 37 - Carga de ruptura convencionada vs a estimativa de capacidade de carga pelo método de Aoki e Velloso (1975)

A Figura 38 apresenta a distribuição de valores de carga de ruptura convencionada (Qm) e a estimativa da capacidade de carga (Qp) pelo método de Aoki e Velloso (1975) modificado por Laprovitera (1988) e Benegas (1993) para as estacas avaliadas na pesquisa.

Figura 38 - Gráfico da carga de ruptura convencionada vs a estimativa de capacidade de carga pelo método de Aoki e Velloso (1975) modificado por Laprovitera (1988) e Benegas (1993)

Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983)

Fonte: Elaborada pelo próprio autor

A Figura 39 apresenta a distribuição de valores de carga de ruptura convencionada (Qm) e a estimativa da capacidade de carga (Qp) pelo método de Décourt Quaresma (1978) para as estacas avaliadas na pesquisa.

Figura 39 - Gráfico da carga de ruptura convencionada vs a estimativa de capacidade de carga pelo método de Décourt Quaresma (1978)

A Figura 40 apresenta a distribuição de valores de carga de ruptura convencionada (Qm) e a estimativa da capacidade de carga (Qp) pelo método de

Antunes e Cabral (2000) por valores mínimos para as estacas avaliadas na pesquisa.

Figura 40 - Gráfico da carga de ruptura convencionada vs a estimativa de capacidade de carga pelo método de Antunes e Cabral (2000) por valores mínimos

Método Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 mínimos

Fonte: Elaborada pelo próprio autor

A Figura 41 apresenta a distribuição de valores de carga de ruptura convencionada (Qm) e a estimativa da capacidade de carga (Qp) pelo método de Antunes e Cabral (2000) por valores máximos para as estacas avaliadas na pesquisa.

Figura 41 - Gráfico da carga de ruptura convencionada vs a estimativa de capacidade de carga pelo método de Antunes e Cabral (2000) por valores máximos

Método Antunes e Cabral (2000) utilizando coeficientes ß1 e ß2 máximos

Fonte: Elaborada pelo próprio autor

Analisando os cinco métodos, é possível apresentar a relação entre a carga estimada pelo método (Qp) e a carga obtida através da extrapolação da capacidade de carga (Qm) e para isso, receberam uma legenda correspondente a cada método, conforme Tabela 81.

Método	Legenda
Aoki e Velloso (1975)	AV (1975)
Aoki e Velloso (1975) - Modificado por Laprovitera (1988) e Benegas (1993)	AV (1975) - LB (1978;1983)
Décourt e Quaresma (1978)	DQ (1978)
Antunes e Cabral (2000) por coeficientes mínimos	AC (2000) - MN
Antunes e Cabral (2000) por coeficientes máximos	AC (2000) - MX

Fonte: Elaborada pelo próprio autor

A Figura 42 apresenta a relação entre a estimativa da capacidade de carga de cada método (Qp) e a carga obtida pela extrapolação da capacidade de carga (Qm) para a estaca 1. É possível notar que o método de Décourt e Quaresma (1978) apresentou resultado que superestimou o valor da prova de carga e que o método de Aoki e Velloso (1975), subestimou o valor da prova de carga para a estaca 1, levando em consideração a análise do solo e dos resultados do ensaio SPT.

Figura 42 - Relação Qp/Qm da Estaca 1

Fonte: Elaborada pelo próprio autor

A Figura 43 apresenta a relação entre a estimativa da capacidade de carga de cada método (Qp) e a carga obtida pela extrapolação da capacidade de carga (Qm) para a estaca 2. É possível notar que o método de Décourt e Quaresma (1978) apresentou resultado que superestimou o valor da prova de carga e que os métodos de Aoki e Velloso (1975) e de Antunes e Cabral (2000) por coeficientes mínimos, apresentaram empate técnico, subestimaram o valor da prova de carga para a estaca 2, levando em consideração a análise do solo e dos resultados do ensaio SPT.

Figura 43 - Relação Qp/Qm da Estaca 2

A Figura 44 apresenta a relação entre a estimativa da capacidade de carga de cada método (Qp) e a carga obtida pela extrapolação da capacidade de carga (Qm) para a estaca 3. É possível notar que o método de Décourt e Quaresma (1978) apresentou resultado que superestimou o valor da prova de carga e que o método de Aoki e Velloso (1975), subestimou o valor da prova de carga para a estaca 3, levando em consideração a análise do solo e dos resultados do ensaio SPT.

Figura 44 - Relação Qp/Qm da Estaca 3

Fonte: Elaborada pelo próprio autor

A Figura 45 apresenta a relação entre a estimativa da capacidade de carga de cada método (Qp) e a carga obtida pela extrapolação da capacidade de carga (Qm) para a estaca 4. É possível notar que o método de Décourt e Quaresma (1978) apresentou resultado que superestimou o valor da prova de carga e que o método de Antunes e Cabral (2000) por coeficientes mínimos, subestimou o valor da prova de carga para a estaca 4, levando em consideração a análise do solo e dos resultados do ensaio SPT.

Figura 45 - Relação Qp/Qm da Estaca 4

Fonte: Elaborada pelo próprio autor

A Figura 46 apresenta a relação entre a estimativa da capacidade de carga de cada método (Qp) e a carga obtida pela extrapolação da capacidade de carga (Qm) para a estaca 5. É possível notar que o método de Décourt e Quaresma (1978) apresentou resultado que se aproximou com exatidão do valor da prova de carga e que o método de Aoki e Velloso (1975), subestimou o valor da prova de carga para a estaca 5, levando em consideração a análise do solo e dos resultados do ensaio SPT.

Figura 46 - Relação Qp/Qm da Estaca 5

A Figura 47 apresenta a relação entre a estimativa da capacidade de carga de cada método (Qp) e a carga obtida pela extrapolação da capacidade de carga (Qm) para a estaca 6. É possível notar que o método de Décourt e Quaresma (1978) apresentou resultado que mais se aproximou ao valor da prova de carga, porém foi o mais preciso dos métodos, e que o método de Aoki e Velloso (1975), também subestimou o valor da prova de carga para a estaca 6, apresentando valores mais baixos, levando em consideração a análise do solo e dos resultados do ensaio SPT.

Figura 47 - Relação Qp/Qm da Estaca 6

A Figura 48 apresenta a relação entre a estimativa da capacidade de carga de cada método (Qp) e a carga obtida pela extrapolação da capacidade de carga (Qm) para a estaca 7. É possível notar que o método de Décourt e Quaresma (1978) apresentou resultado que superestimou o valor da prova de carga e que o método de Antunes e Cabral (2000) por coeficientes mínimos, subestimou o valor da prova de carga para a estaca 7, levando em consideração a análise do solo e dos resultados do ensaio SPT.

Figura 48 - Relação Qp/Qm da Estaca 7

Fonte: Elaborada pelo próprio autor

A Figura 49 apresenta a relação entre a estimativa da capacidade de carga de cada método (Qp) e a carga obtida pela extrapolação da capacidade de carga (Qm) para a estaca 8. É possível notar que o método de Décourt e Quaresma (1978) apresentou resultado que superestimou o valor da prova de carga e que o método de Antunes e Cabral (2000) por coeficientes mínimos, subestimou o valor da prova de carga para a estaca 8, levando em consideração a análise do solo e dos resultados do ensaio SPT.

Figura 49 - Relação Qp/Qm da Estaca 8

Fonte: Elaborada pelo próprio autor

A Figura 50 apresenta a relação entre a estimativa da capacidade de carga de cada método (Qp) e a carga obtida pela extrapolação da capacidade de carga (Qm) para a estaca 9. É possível notar que o método de Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983) apresentou resultado mais próximo ao valor da prova de carga e que o método de Décourt e Quaresma (1978), subestimou o valor da prova de carga para a estaca 9, levando em consideração a análise do solo e dos resultados do ensaio SPT.

Figura 50 - Relação Qp/Qm da Estaca 9

Fonte: Elaborada pelo próprio autor

A Figura 51 apresenta a relação entre a estimativa da capacidade de carga de cada método (Qp) e a carga obtida pela extrapolação da capacidade de carga (Qm) para a estaca 10. É possível notar que o método de Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983) apresentou resultado que superestimou o valor da prova de carga e que o método de Décourt e Quaresma (1978), subestimou o valor da prova de carga para a estaca 10, levando em consideração a análise do solo e dos resultados do ensaio SPT.

Figura 51 - Relação Qp/Qm da Estaca 10

Fonte: Elaborada pelo próprio autor

A Figura 52 apresenta a relação entre a estimativa da capacidade de carga de cada método (Qp) e a carga obtida pela extrapolação da capacidade de carga (Qm) para a estaca 11. É possível notar que o método de Décourt e Quaresma (1978) apresentou resultado que superestimou o valor da prova de carga e que o método de Antunes e Cabral (2000) por coeficientes mínimos, subestimou o valor da prova de carga para a estaca 11, levando em consideração a análise do solo e dos resultados do ensaio SPT.

Figura 52 - Relação Qp/Qm da Estaca 11

Com base nos valores demonstrados acima e na metodologia deste trabalho, é possível classificar os métodos semiempíricos da previsão da capacidade de carga para estacas do tipo hélice contínua monitorada através dos parâmetros de R1 e R2.

A partir dessas classificações, é possível obter o fator RI adaptado, somando a ordem de posição que cada método ocupa. A menor soma dentre elas representa o método mais adequado para a estimativa de capacidade de carga do tipo HCM em Fortaleza - Ce, apresentado na Tabela 82.

Tabela 82- Valores de RI

Identificação do Método de	Classific o	cação R1	para	Classif	icação pa R2	ira o	Ranking Final	
Estimativa da Capacidade de Carga	Qp/Qm	R²	R1	Média	Desvio Padrão	R2	RI = R1 + R2	RI
AV (1975)	0,73	0,91	4	0,76	0,22	4	8	4
AV (1975) - LB (1978;1983)	0,96	0,92	1	1,00	0,31	1	2	1
DQ (1978)	1,12	0,82	3	1,22	0,51	3	6	3
AC (2000) - MN	0,67	0,96	5	0,72	0,14	5	10	5
AC (2000) - MX	0,80	0,95	2	0,86	0,18	2	4	2

Fonte: Elaborada pelo próprio autor

Conforme o método de classificação pelo RI indica, analisando os resultados de forma modificada, a partir dos parâmetros de R1 e R2, é possível apresentar que o método de Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983) foi classificado, diante das condições desta pesquisa, como o método mais indicado para estimativa da capacidade de carga para estacas HCM levando em consideração sua razão entre a capacidade de carga estimada e a capacidade obtida através da prova de carga, a média dos valores obtidos e o desvio padrão entre eles, e, na sequência, seguido pelos métodos de Antunes e Cabral (2000) por coeficientes máximos, Décourt e Quaresma (1978), Aoki e Velloso (1975) e Antunes e Cabral (2000) por coeficientes mínimos, nesta ordem.

5.0 CONCLUSÕES

No presente trabalho, propôs-se uma análise estatística de quatro métodos semiempíricos para a determinação da previsão da capacidade de carga de estacas do tipo hélice contínua monitorada no município de Fortaleza - CE. A partir dessa análise, buscou-se indicar quais desses métodos de estimativa apresentam maior assertividade, quando comparados aos resultados obtidos por meio das provas de carga realizadas nas obras referenciadas, situadas em cinco bairros da capital.

A metodologia baseia-se na análise dos dados apresentados nos ensaios de SPT para cada estaca ou conjunto de estacas das obras selecionadas. Utilizando esses dados do solo e as características das estacas do tipo hélice contínua monitorada, como profundidade e diâmetro, nos métodos de Aoki e Velloso (1975), Aoki e Velloso (1975) modificado por Laprovitera (1978), Benegas (1983), Décourt e Quaresma (1978) e Antunes e Cabral (2000), foi possível obter a previsão da capacidade de carga para cada estaca analisada.

As estacas foram submetidas a ensaios de prova de carga, resultando em curvas de carga versus recalque, posteriormente extrapoladas pelo método de Décourt (1996) com o objetivo de identificar a carga máxima de ruptura. A partir desses dados, foi possível realizar uma comparação entre as cargas previstas pelos métodos semiempíricos e as cargas de ruptura, com o intuito de mensurar a precisão dos quatro métodos empregados.

A classificação das metodologias foi baseada pela análise estatística do Ranking Index (RI), de acordo com os parâmetros 1 e 2 do método. Apesar dos dados de sondagens e provas de carga estarem restritos a cinco obras em Fortaleza - CE, é possível obter conclusões iniciais sobre o comportamento geral das estacas HCM na cidade.

Embora alguns métodos de previsão da capacidade de carga tenham apresentado resultados mais precisos do que outros, os estudos sobre esse assunto permitem seguir com a obtenção e análise de dados para aprimorar os resultados obtidos. Desse modo, torna-se possível realizar os devidos ajustes nos modelos com o objetivo de aumentar a precisão e a confiabilidade das estimativas de capacidade de carga. A partir dessas ações, será possível obter mais dados e analisar se a tendência se mantém nos mesmos bairros ou em diferentes partes da cidade, visando uma conclusão mais assertiva.

Diante dos dados analisados neste trabalho, é possível deduzir algumas conclusões gerais:

- A metodologia de Décourt (1996), de extrapolação da prova de carga, apresentou uma curva inicial com comportamento similar ao das curvas de carga versus recalque obtidos pelas provas de carga.
- 2) Com base nos valores de capacidade de carga estimados e medidos, foi possível verificar que os métodos de Aoki e Velloso (1975) modificado por Laprovitera (1978) e Benegas (1983) e Antunes e Cabral (2000) com coeficientes máximos, através da análise do Ranking Index (RI), por fatores de R1 e R2, apresentam a melhor precisão na estimativa da capacidade de carga das estacas do tipo HCM no município de Fortaleza.
- 3) Na mesma análise do RI, o método de Antunes e Cabral com coeficientes mínimos apresentaram a última colocação, ou seja, os maiores valores de RI, sendo assim, os menos recomendados, para os dados até então avaliados.
- 4) No geral, os quatro métodos abordados neste trabalho apresentam características semelhantes, fornecendo estimativas conservadoras para a grande maioria das estacas analisadas, considerando as premissas adotadas para alcançar esses resultados.

Para trabalhos futuros, recomenda-se uma avaliação estatística para outras metodologias construtivas de fundações por estacas assentes em solos típicos do município de Fortaleza.

Além disso, sugere-se a avaliação estatísticas das mesmas metodologias de capacidade de carga para estacas HCM em distintos perfis estratigráficos, coletando e utilizando resultados de outros bairros do município.

Por fim, indica-se a avaliação estatística de outras metodologias de capacidade de carga, para estacas HCM no município de Fortaleza.

REFERÊNCIAS

ABU-FARSAKH, M. Y., TITI, H. H (2004). Avaliação de Métodos de Teste de Penetração Cone Direta para Prever a Capacidade Máxima de Estacas Impulsionadas por Fricção. Acesso em: 15 abr. 2023.

ALBUQUERQUE, P. J. R **Estacas escavadas, hélice contínua e ômega**: estudo do comportamento à compressão em solo residual de diabásio, através de provas de carga instrumentadas em profundidade. 2001. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2001. . Acesso em: 16 mar. 2023.

ALBUQUERQUE, P. J. R. **Engenharia de Fundações**. Grupo GEN, 2020. E-book. ISBN 9788521636977. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788521636977/. Acesso em: 02 abr. 2023.

ALMEIDA NETO, J. A. **Análise do desempenho de estacas hélice contínua e ômega** - Aspectos executivos. Dissertação (Mestrado). Escola Politécnica, Universidade de São Paulo, São Paulo, 2002.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6122**: Projeto e execução de fundações, 2022.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6484**: Solo – Sondagens de simples reconhecimentos com SPT – Método de ensaio, 2020.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 8036**: Programação de sondagens de simples reconhecimento dos solos para fundações de edifícios, 1983.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 8197**: Materiais metálicos, 2021.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 16903**: Solo — Prova de carga estática em fundação profunda, 2020.

BRIAUD, J. L, TUCKER, L. M. (1988). **Resposta axial medida e prevista de 98** estacas. J. Geotech Eng. Acesso em: 30 abr. 2023.

Comité Europeu de Normalização (2004). EN 1997-1:2004: **Eurocode 7**. Geotechnical Design – Part 1: General rules. Brussels, Belgium, pp. 171.

COSTA, G. F. Interpretação dos Resultados de Ensaios SPT e CPTu Realizados no Município de Biguaçu – SC. XI Congresso Luso Brasileiro de Geotecnia. 2022. Campinas, São Paulo.

DIAS, F. G. **Guia:** Estacas moldadas in loco. (2018). Disponível em: <u>https://fabriciogonzalez.com.br/blog-guia-estacas-moldadas</u> . Acesso em: 11 mar. 2023.

DIAS, I. L. ANÁLISE DE DADOS DE MONITORAMENTO DA EXECUÇÃO DE ESTACAS HÉLICE CONTÍNUA MONITORADA EM FORTALEZA - CE. (2016). TCC Universidade de Fortaleza, UNIFOR.

GONCALVES, S. F., **Estudo do comportamento à compressão de estacas metálicas curtas em solo sedimentar.** 2019. Disponível em: <u>https://repositorio.ufsm.br/bitstream/handle/1/7694/SERGIOGONCALVES.pdf?seque</u> <u>nce=1&isAllowed=y</u>. Acesso em: 28 mar. 2023.

LONG, J. H, WYSOCKEY, M. H. (1999). Precisão dos métodos para prever a capacidade axial de fundações profundas. OTRC'99 Conf.: Análise, Projeto, Construção e Teste de fundações profundas, GSP No. 99, ASCE, Reston, Virgínia. Acesso em 01 mai. 2023.

MASCAGNA COSTA, W., QUARESMA, J. E., & FLORIAN, F. (2021). **VIABILIDADE DA HÉLICE CONTÍNUA NA CONSTRUÇÃO CIVIL**. RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 2(10), e210807. Disponível em: <u>https://doi.org/10.47820/recima21.v2i10.807</u>. Acesso em 12 mar. 2023.

MELO, B. **Análise de Provas de Carga à Compressão à Luz do Conceito de Rigidez**. Dissertação de Mestrado da Universidade Estadual de Campinas, (2009). Campinas, SP.

MILITITSKY, J. **Histórico de fundações profundas:** Evolução e perspectivas. In: SEMINÁRIO DE FUNDAÇÕES PROFUNDAS, 2004, Porto Alegre. Anais... Porto Alegre, ABMS, 2004.

MONTEIRO, F. F. **Desenvolvimento de uma proposta para o controle executivo de estacas do tipo de raiz.** 2016. 128 f. Dissertação (Mestrado em Engenharia Civil: Geotecnia)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2016.

NEVES, L. F. S. et al (2004). Metodologia para a determinação da eficiência do ensaio SPT através de prova de carga estática sobre o amostrador padrão. Disponível em:

https://www.researchgate.net/figure/Figura-25-Sistema-de-reacao-por-cargueira_fig3 _35950316 . Acesso em: 30 mar. 2023.

ODEBRECHT, E. **MEDIDAS DE ENERGIA NO ENSAIO SPT.** 2003. Repositório Digital Lume. Porto Alegre, RS. Disponível em: <u>http://hdl.handle.net/10183/5840</u> Acesso em: 17 mar. 2023.

QUEIROZ, J. O. **USO DE HÉLICE CONTÍNUA EM UMA CONSTRUÇÃO VERTICAL EM GOIÂNIA - GOIÁS**. 2019. Disponível em: <u>http://repositorio.anhanguera.edu.br:8080/jspui/handle/123456789/300</u>. Acesso em: 12 mar. 2023.

ROCHA, B P. **Emprego do ensaio SPT sísmico na investigação de solos tropicais**. 2013. Dissertação (Mestrado em Geotecnia) - Escola de Engenharia de São Carlos, University of São Paulo, São Carlos, 2013. doi:10.11606/D.18.2013.tde-28112013-100232. Acesso em: 16 mar 2023.

SCHULZE, T. Análise da capacidade de carga de estaca escavada instrumentada de pequeno diâmetro por meio de métodos semi-empíricos. 2013. 136 p. Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Campinas, SP. Disponível em: https://hdl.handle.net/20.500.12733/1620645. Acesso em: 07 mar. 2023.

SCIPIÃO, CC Análise da previsão da capacidade de carga à tração de estacas hélice contínua em solo granular e proposta de alternativas. 105 f. Dissertação (Mestrado em Engenharia Civil) - Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Civil: Geotecnia, Universidade Federal do Ceará, Fortaleza, 2019. SILVA FILHO, J. F, MONTEIRO, D. C. **FUNDAÇÃO EM HÉLICE CONTÍNUA**. 2022. Repositório Universitário da Ânima (RUNA), TCC de Graduação e Especialização. João Pessoa, PB. Disponível em: <u>https://repositorio.animaeducacao.com.br/handle/ANIMA/26824</u>. Acesso em: 17 mar. 2023.

SOUSA, T. C *et al.* Análise de Métodos Semi-Empíricos para o Cálculo da Capacidade de Carga de Estacas da Capacidade de Carga de Estacas Hélice Contínua Monitorada em Obras de Fortaleza. 2018. XIX Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica, Salvador, Bahia. Disponível em: <u>https://www.researchgate.net/publication/327477079_Analise_de_Metodos_Semi-E</u> <u>mpiricos_para_o_Calculo_da_Capacidade_de_Carga_de_Estacas_Helice_Continua_Monitorada_em_Obras_de_Fortaleza</u>. Acesso em: 16 mar. 2023.

SOUZA, W. A. R. Variabilidade de parâmetros de resistência de solos arenosos mediante análise de resultados de sondagens com SPT. 2017. 20 f. TCC (Graduação) - Curso de Engenharia Civil, Universidade Federal do Rio Grande do Norte, Natal, 2017. Disponível em:

https://repositorio.ufrn.br/handle/123456789/40678. Acesso em 14 mar. 2023.

TAVARES, C. A. A. **Elaboração e aplicação de uma metodologia de controle de qualidade para o processo executivo de estacas hélice contínua monitoradas.** 2009. 117 f. Dissertação (Mestrado em Estruturas e Construção Civil)-Universidade de Brasília, Brasília, 2009. Disponível em: <u>https://repositorio.unb.br/handle/10482/3896</u>. Acesso em: 15 mar. 2023.

TEIXEIRA, A. L. **Estudo de caso de fundação em estaca tipo hélice contínua em sites de mineração:** dimensionamento e análise comparativa. Disponível em: http://hdl.handle.net/1843/BUOS-APPG33 . Acesso em: 11 mar. 2023.