Use este identificador para citar ou linkar para este item: https://repositorio.unichristus.edu.br/jspui/handle/123456789/1996
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorCunha, Diana Araújo-
dc.contributor.authorQueiroz, Gisele Brito de-
dc.date.accessioned2025-12-15T16:33:52Z-
dc.date.available2025-12-15T16:33:52Z-
dc.date.issued2025-11-30-
dc.identifier.urihttps://repositorio.unichristus.edu.br/jspui/handle/123456789/1996-
dc.descriptionAJAY SHARMA, L. et al. Healing response of rat pulp treated with an injectable keratin hydrogel. Journal of Applied Biomaterials & Functional Materials, v. 15, n. 3, p. e244-e50, 2017. Disponível em: https://doi.org/10.5301/japbfm.5000292. Acesso em: 12 out. 2025. ALQAHTANI, Q. et al. Decellularized swine dental pulp tissue for regenerative root canal therapy. Journal of Dental Research, v. 97, n. 13, p. 1460-1467, 2018. Disponível em: https://doi.org/10.1177/0022034518785124. Acesso em: 12 out. 2025. ARAÚJO, M. G. et al. Do alternative scaffolds used in regenerative endodontics promote better root development than that achieved with blood clots? Brazilian Dental Journal, v. 33, n. 2, p. 22-32, 2022. Disponível em: https://doi.org/10.1590/0103-6440202204746. Acesso em: 21 out. 2025. BERTASSONI, L. E. et al. The dentin organic matrix - limitations of restorative dentistry hidden on the nanometer scale. Acta Biomaterialia, v. 8, n. 7, p. 2419-33, 2012. Disponível em: https://doi.org/10.1016/j.actbio.2012.03.016. Acesso em: 11 out. 2025. BJØRNDAL, L. et al. Management of deep caries and the exposed pulp. International Endodontic Journal, v. 52, n. 7, p. 949-73, 2019. Disponível em: https://doi.org/10.1111/iej.13079. Acesso em: 11 out. 2025. BRIZUELA, C. et al. Direct Pulp Capping with Calcium Hydroxide, Mineral Trioxide Aggregate, and Biodentine in Permanent Young Teeth with Caries: A Randomized Clinical Trial. Journal of Endodontics, v. 43, n. 11, p. 1776-80, 2017. Disponível em: https://doi.org/10.1016/j.joen.2017.06.012. Acesso em: 21 out. 2025. BUDIRAHARJO, R. et al. Bioactivity of novel carboxymethyl chitosan scaffold incorporating MTA in a tooth model. International Endodontic Journal, v. 43, n. 10, p. 930-939, 2010. Disponível em: https://doi.org/10.1111/j.1365-2591.2010.01771.x. Acesso em: 11 out. 2025. CELIK, B. N. et al. The evaluation of MTA and Biodentine as a pulpotomy materials for carious exposures in primary teeth. Clinical Oral Investigations, v. 23, n. 2, p. 661-6, 2019. Disponível em: https://doi.org/10.1007/s00784-018-2465-9. Acesso em: 12 out. 2025. CHOI, S. H. et al. Effect of Leptin on Odontoblastic Differentiation and Angiogenesis: An In Vivo Study. Journal of Endodontics, v. 45, n. 11, p. 1332-41, 2019. Disponível em: https://doi.org/10.1016/j.joen.2019.07.009. Acesso em: 12 out. 2025. CUNHA, D. et al. 3D-printed microgels supplemented with dentin matrix molecules as a novel biomaterial for direct pulp capping. Clinical Oral Investigations, v. 27, n. 3, p. 1215-1225, 2022. Disponível em: https://doi.org/10.1007/s00784-022-04735-z. Acesso em: 12 out. 2025. CUSHLEY, S. et al. Efficacy of direct pulp capping for management of cariously exposed pulps in permanent teeth: a systematic review and meta-analysis. International Endodontic Journal, v. 54, n. 4, p. 556-71, 2021. Disponível em: https://doi.org/10.1111/iej.13449. Acesso em: 12 out. 2025. DAL-FABBRO, R. et al. Next-generation biomaterials for dental pulp tissue immunomodulation. Dental Materials, v. 39, n. 3, p. 333-349, 2023. Disponível em: https://doi.org/10.1016/j.dental.2023.03.013. Acesso em: 12 out. 2025. DE OLIVEIRA, L. et al. Could the application of bioactive molecules improve vital pulp therapy success? A systematic review. Journal of Biomedical Materials Research Part A, v. 105, n. 3, p. 941-956, 2017. Disponível em: https://doi.org/10.1002/jbm.a.35968. Acesso em: 11 out. 2025. DÍEZ-TERCERO, L.; DELGADO, L. M.; PEREZ, R. A. Modulation of macrophage response by copper and magnesium ions in combination with low concentrations of dexamethasone. Biomedicines, v. 10, n. 4, p. 764, 2022. Disponível em: https://doi.org/10.3390/biomedicines10040764. Acesso em: 11 out. 2025. DUNCAN, H. F. et al. European Society of Endodontology position statement: Management of deep caries and the exposed pulp. International Endodontic Journal, v. 52, n. 7, p. 923-34, 2019. Disponível em: https://doi.org/10.1111/iej.13080. Acesso em: 13 out. 2025. ELKADY, D. M. et al. An animal study on the effectiveness of platelet-rich plasma as a direct pulp capping agent. Scientific Reports, v. 14, p. 3699, 2024. Disponível em: https://doi.org/10.1038/s41598-024-54162-1. Acesso em: 13 out. 2025. FARZAD-MOHAJERI, S. et al. Direct pulp capping with autologous bone marrow derived stem cells in dogs. In: VETERINARY RESEARCH FORUM, 2022, Urmia, Iran. Urmia: Faculty of Veterinary Medicine, Urmia University, 2022. p. 193. Disponível em: https://doi.org/10.30466/vrf.2022.532354.1207. Acesso em: 13 out. 2025. FERRACANE, J. L.; COOPER, P. R.; SMITH, A. J. Dentin Matrix Component Solubilization by Solutions at pH Relevant to Self-etching Dental Adhesives. Journal of Adhesive Dentistry, v. 15, n. 5, p. 433-439, 2013. Disponível em: https://doi.org/10.3290/j.jad.a29828. Acesso em: 23 out. 2025. FREIRE, M. C. M.; CORRÊA-FARIA, P.; COSTA, L. R. Effect of dental pain and caries on the quality of life of Brazilian preschool children. Revista de Saúde Pública, v. 52, p. 30, 2018. Disponível em: https://doi.org/10.11606/s1518-8787.2018052000282. Acesso em: 12 out. 2025. FU, Q.; SAIZ, E.; TOMSIA, A. P. Bioinspired strong and highly porous glass scaffolds. Advanced Functional Materials, v. 21, n. 6, p. 1058-1063, 2011. Disponível em: https://doi.org/10.1002/adfm.201002151. Acesso em: 12 out. 2025. GIRAUD, T. et al. Pulp capping materials modulate the balance between inflammation and regeneration. Dental Materials, v. 35, n. 1, p. 24-35, 2019. Disponível em: https://doi.org/10.1016/j.dental.2018.10.016. Acesso em: 11 out. 2025. GOLDBERG, M. et al. Application of bioactive molecules in pulp-capping situations. Advanced Dental Research, v. 15, n. 1, p. 91-95, 2001. Disponível em: https://doi.org/10.1177/08959374010150012401. Acesso em: 11 out. 2025. GOLDBERG, M. et al. Is pulp inflammation a prerequisite for pulp healing and regeneration? Mediators of Inflammation, v. 2015, p. 347649, 2015. Disponível em: https://doi.org/10.1155/2015/347649. Acesso em: 11 out. 2025. GUERRERO-GIRONÉS, J. et al. Biocompatibility of a HA/β-TCP/C scaffold as a pulp-capping agent for vital pulp treatment: An in vivo study in rat molars. International Journal of Environmental Research and Public Health, v. 18, n. 8, p. 3936, 2021. Disponível em: https://doi.org/10.3390/ijerph18083936. Acesso em: 11 out. 2025. HAN, Y. et al. GelMA/TCP nanocomposite scaffold for vital pulp therapy. Acta Biomaterialia, v. 173, p. 495-508, 2024. Disponível em: https://doi.org/10.1016/j.actbio.2023.11.005. Acesso em: 13 out. 2025. HARGREAVES, K. M.; GOODIS, H. E. Seltzer and Bender's Dental Pulp. 9. ed. Chicago: Quintessence Publishing Company, 2002. HOOIJMANS, C. R. et al. SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology, v. 14, p. 43, 2014. Disponível em: https://doi.org/10.1186/1471-2288-14-43. Acesso em: 13 out. 2025. HORBETT, T. A. Fibrinogen adsorption to biomaterials. Journal of Biomedical Materials Research Part A, v. 106, n. 11, p. 2777-2788, 2018. Disponível em: https://doi.org/10.1002/jbm.a.36460. Acesso em: 13 out. 2025. HU, L. et al. Decellularized swine dental pulp as a bioscaffold for pulp regeneration. Biomed Research International, v. 2017, p. 9342714, 2017. Disponível em: https://doi.org/10.1155/2017/9342714. Acesso em: 13 out. 2025. HUAN, Z.; CHANG, J.; ZHOU, J. Low-temperature fabrication of macroporous scaffolds through foaming and hydration of tricalcium silicate paste and their bioactivity. Journal of Materials Science, v. 45, p. 3200-3207, 2010. Disponível em: https://doi.org/10.1007/s10853-010-4542-5. Acesso em: 13 out. 2025. KANG, H. J. et al. Injectable human hair keratin-fibrinogen hydrogels for engineering 3D microenvironments to accelerate oral tissue regeneration. International Journal of Molecular Sciences, v. 22, n. 24, p. 13269, 2021. Disponível em: https://doi.org/10.3390/ijms222413269. Acesso em: 13 out. 2025. KIM, J. Y. et al. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Engineering Part A, v. 16, n. 10, p. 3023-31, 2010. Disponível em: https://doi.org/10.1089/ten.tea.2009.0760. Acesso em: 13 out. 2025. KIM, J. Y. et al. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Engineering Part A, v. 16, n. 10, p. 3023-3031, 2010. Disponível em: https://doi.org/10.1089/ten.tea.2009.0760. Acesso em: 12 out. 2025. KOEDAM, J. A.; SMINK, J. J.; VAN BUUL-OFFERS, S. C. Glucocorticoids inhibit vascular endothelial growth factor expression in growth plate chondrocytes. Molecular Endocrinology, v. 197, n. 1-2, p. 35-44, 2002. Disponível em: https://doi.org/10.1016/S0303-7207(02)00030-9. Acesso em: 23 out. 2025. LANGER, R.; VACANTI, J. P. Tissue engineering. Science, v. 260, n. 5110, p. 920-926, 1993. Disponível em: https://doi.org/10.1126/science.8493529. Acesso em: 23 out. 2025. LEE, W. et al. Performance of electrospun poly (ε-caprolactone) fiber meshes used with mineral trioxide aggregates in a pulp capping procedure. Acta Biomaterialia, v. 8, n. 8, p. 2986-2995, 2012. Disponível em: https://doi.org/10.1016/j.actbio.2012.04.020. Acesso em: 23 out. 2025. LI, F. et al. Porous chitosan bilayer membrane containing TGF-β1 loaded microspheres for pulp capping and reparative dentin formation in a dog model. Dental Materials, v. 30, n. 2, p. 172-181, 2014. Disponível em: https://doi.org/10.1016/j.dental.2013.11.002. Acesso em: 13 out. 2025. LIN, H. P. et al. Controlled release of lovastatin from poly(lactic-co-glycolic acid) nanoparticles for direct pulp capping in rat teeth. International Journal of Nanomedicine, v. 12, p. 5473-85, 2017. Disponível em: https://doi.org/10.2147/IJN.S141208. Acesso em: 11 out. 2025. LITVINOV, R. I.; WEISEL, J. W. Fibrin mechanical properties and their structural origins. Matrix Biology, v. 60, p. 110-123, 2017. Disponível em: https://doi.org/10.1016/j.matbio.2016.08.003. Acesso em: 11 out. 2025. LIU, Q. et al. Demineralized bone matrix used for direct pulp capping in rats. PloS One, v. 12, n. 3, p. e0172693, 2017. Disponível em: https://doi.org/10.1371/journal.pone.0172693. Acesso em: 11 out. 2025. LUO, J. C. et al. Dexamethasone delays ulcer healing by inhibition of angiogenesis in rat stomachs. European Journal of Pharmacology, v. 485, n. 1-3, p. 275-281, 2004. Disponível em: https://doi.org/10.1016/j.ejphar.2003.11.038. Acesso em: 11 out. 2025. MANGIONE, F. et al. Implanted dental pulp cells fail to induce regeneration in partial pulpotomies. Journal of Dental Research, v. 96, n. 12, p. 1406-1413, 2017. Disponível em: https://doi.org/10.1177/0022034517725523. Acesso em: 23 out. 2025. MANSOORIFAR, A. et al. Embedding cells within nanoscale, rapidly mineralizing hydrogels: a new paradigm to engineer cell-laden bone-like tissue. Journal of Structural Biology, v. 212, n. 3, p. 107636, 2020. Disponível em: https://doi.org/10.1016/j.jsb.2020.107636. Acesso em: 23 out. 2025. MOHER, D. et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Journal of Clinical Epidemiology, v. 62, n. 10, p. 1006-1012, 2009. Disponível em: https://doi.org/10.1016/j.jclinepi.2009.01.009. Acesso em: 23 out. 2025. MONTEIRO, N. et al. Engineering microvascular networks in LED light-cured cell-laden hydrogels. ACS Biomaterials Science & Engineering, v. 4, n. 7, p. 2563-2570, 2018. Disponível em: https://doi.org/10.1021/acsbiomaterials.8b00196. Acesso em: 15 out. 2025. MOUSSA, D. G.; APARICIO, C. Present and future of tissue engineering scaffolds for dentin‐pulp complex regeneration. Journal of Tissue Engineering and Regenerative Medicine, v. 13, n. 1, p. 58-75, 2019. Disponível em: https://doi.org/10.1002/term.2779. Acesso em: 15 out. 2025. NAKASHIMA, M. Induction of dentin formation on canine amputated pulp by recombinant human bone morphogenetic proteins (bmp)-2 and -4. Journal of Dental Research, v. 73, n. 9, p. 1515-1522, 1994. Disponível em: https://doi.org/10.1177/00220345940730090601. Acesso em: 15 out. 2025. OBEID, M. et al. Mesenchymal stem cells promote hard-tissue repair after direct pulp capping. Journal of Endodontics, v. 39, n. 5, p. 626-631, 2013. Disponível em: https://doi.org/10.1016/j.joen.2012.12.012. Acesso em: 15 out. 2025. OBURO, F. et al. ORIGINAL: Evaluation of Biodentine® and Calcium Hydroxide in the Formation of Dentin Bridge in Deep Carious Lesions: West Afr J Med. 2024 September; 41 (9): 927-936 PMID: 39862396. West African Journal of Medicine, v. 41, n. 9, p. 927-936, 2024. Disponível em: https://www.ajol.info/index.php/wajm/article/view/256793. Acesso em: 15 out. 2025. OKAMOTO, M. et al. Performance of a biodegradable composite with hydroxyapatite as a scaffold in pulp tissue repair. Polymers, v. 12, n. 4, p. 937, 2020. Disponível em: https://doi.org/10.3390/polym12040937. Acesso em: 15 out. 2025. OUZZANI, M. et al. Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, v. 5, p. 210, 2016. Disponível em: https://doi.org/10.1186/s13643-016-0384-4. Acesso em: 15 out. 2025. PRATI, C.; GANDOLFI, M. G. Calcium silicate bioactive cements: Biological perspectives and clinical applications. Dental Materials, v. 31, n. 4, p. 351-370, 2015. Disponível em: https://doi.org/10.1016/j.dental.2015.01.004. Acesso em: 15 out. 2025. QURESHI, A. et al. Recent advances in pulp capping materials: an overview. Journal of Clinical and Diagnostic Research: JCDR, v. 8, n. 1, p. 316, 2014. Disponível em: https://doi.org/10.7860/JCDR/2014/6682.3995. Acesso em: 23 out. 2025. RAHMAN, S. U. et al. Nanoscale and macroscale scaffolds with controlled-release polymeric systems for dental craniomaxillofacial tissue engineering. Materials, v. 11, n. 8, p. 1478, 2018. Disponível em: https://doi.org/10.3390/ma11081478. Acesso em: 23 out. 2025. RICKETTS, D. et al. Operative caries management in adults and children. Cochrane Database of Systematic Reviews, n. 3, p. CD003808, 2013. Disponível em: https://doi.org/10.1002/14651858.CD003808.pub3. Acesso em: 23 out. 2025. ROUSE, J. G.; VAN DYKE, M. E. A review of keratin-based biomaterials for biomedical applications. Materials, v. 3, n. 2, p. 999-1014, 2010. Disponível em: https://doi.org/10.3390/ma3020999. Acesso em: 23 out. 2025. RUTHERFORD, B. et al. Transdentinal stimulation of reparative dentine formation by osteogenic protein-1 in monkeys. Archives of Oral Biology, v. 40, n. 7, p. 681-683, 1995. Disponível em: https://doi.org/10.1016/0003-9969(95)00020-P. Acesso em: 23 out. 2025. SALEHI, S. et al. Dentin matrix components extracted with phosphoric acid enhance cell proliferation and mineralization. Dental Materials, v. 32, n. 3, p. 334-342, 2016. Disponível em: https://doi.org/10.1016/j.dental.2015.12.006. Acesso em: 23 out. 2025. SCHÜNEMANN, H. et al. GRADE handbook for grading quality of evidence and strength of recommendations. The GRADE Working Group. Updated October 2013. Disponível em: https://gdt.gradepro.org/app/. Acesso em: 23 out. 2025. SEDEK, E. M. et al. Histological evaluation of the regenerative potential of a novel photocrosslinkable gelatin-treated dentin matrix hydrogel in direct pulp capping: an animal study. BMC Oral Health, v. 24, p. 114, 2024. Disponível em: https://doi.org/10.1186/s12903-024-03868-9. Acesso em: 23 out. 2025. SMITH, A. J. et al. Dentine as a bioactive extracellular matrix. Archives of Oral Biology, v. 57, n. 2, p. 109-121, 2012. Disponível em: https://doi.org/10.1016/j.archoralbio.2011.08.013. Acesso em: 15 out. 2025. SUBBIAH, R.; GULDBERG, R. E. Materials Science and Design Principles of Growth Factor Delivery Systems in Tissue Engineering and Regenerative Medicine. Advanced Healthcare Materials, v. 8, n. 1, p. e1801000, 2019. Disponível em: https://doi.org/10.1002/adhm.201801000. Acesso em: 15 out. 2025. TIAN, S. et al. Concentrated Growth Factor Promotes Dental Pulp Cells Proliferation and Mineralization and Facilitates Recovery of Dental Pulp Tissue. Medical Science Monitor, v. 25, p. 10016-28, 2019. Disponível em: https://doi.org/10.12659/MSM.914275. Acesso em: 23 out. 2025. TOLEDO, R. et al. Calcium hydroxide and iodoform on endodontic treatment of immature teeth. International Journal of Dentistry, v. 9, n. 1, p. 28-37, 2010. Disponível em: http://revodonto.bvsalud.org/scielo.php?script=sci_abstract&pid=S1806-146X2010000100006&lng=en&nrm=iso&tlng=en. Acesso em: 12 out. 2025. TSIANAKAS, A. et al. Induction of an anti-inflammatory human monocyte subtype is a unique property of glucocorticoids, but can be modified by IL-6 and IL-10. Immunobiology, v. 217, n. 3, p. 329-335, 2012. Disponível em: https://doi.org/10.1016/j.imbio.2011.10.002. Acesso em: 12 out. 2025. VANDOOREN, J.; VAN DEN STEEN, P. E.; OPDENAKKER, G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Critical Reviews in Biochemistry and Molecular Biology, v. 48, n. 3, p. 222-272, 2013. Disponível em: https://doi.org/10.3109/10409238.2013.783852. Acesso em: 12 out. 2025. VELASCO, S. R. M. et al. Dental caries spectrum profile in Brazilian public school children and adolescents. Brazilian Oral Research, v. 35, p. e067, 2021. Disponível em: https://doi.org/10.1590/1807-3107bor-2021.vol35.0067. Acesso em: 12 out. 2025. WANG, L. et al. Notoginsenoside R1 functionalized gelatin hydrogels to promote reparative dentinogenesis. Acta Biomaterialia, v. 122, p. 160-71, 2021. Disponível em: https://doi.org/10.1016/j.actbio.2020.12.046. Acesso em: 23 out. 2025. WANG, M.; DUAN, B. Nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. MRS Online Proceedings Library, v. 1301, p. 99–110, 2011. Disponível em: https://doi.org/10.1557/opl.2011.470. Acesso em: 23 out. 2025. WHITEHOUSE, L. L. E. et al. Bioactive molecules for regenerative pulp capping. eCells and Materials Journal, v. 42, p. 415-437, 2021. Disponível em: https://doi.org/10.22203/eCM.v042a25. Acesso em: 12 out. 2025. XIA, L. et al. Enhanced dentin-like mineralized tissue formation by AdShh-transfected human dental pulp cells and porous calcium phosphate cement. PLoS One, v. 8, n. 9, p. e73904, 2013. Disponível em: https://doi.org/10.1371/journal.pone.0073904. Acesso em: 12 out. 2025. XU, R. et al. Enhancing effects of immobilized chondroitin sulfate on odontogenic differentiation of dental pulp stem cells and reparative dentin formation. Journal of Endodontics, v. 49, n. 8, p. 852-860.e3, 2023. Disponível em: https://doi.org/10.1016/j.joen.2023.04.012. Acesso em: 12 out. 2025. YAN, W. et al. Anti-Inflammatory and Mineralization Effects of an ASP/PLGA-ASP/ACP/PLLA-PLGA Composite Membrane as a Dental Pulp Capping Agent. Journal of Functional Biomaterials, v. 13, n. 3, p. 106, 2022. Disponível em: https://doi.org/10.3390/jfb13030106. Acesso em: 23 out. 2025. ZACHMAN, A. L. et al. Pro-angiogenic and anti-inflammatory regulation by functional peptides loaded in polymeric scaffolds for soft tissue regeneration. Tissue Engineering Part A, v. 19, n. 3-4, p. 437-447, 2013. Disponível em: https://doi.org/10.1089/ten.tea.2012.0006. Acesso em: 11 out. 2025. ZHU, N. et al. Silver-Doped Bioactive Glass/Chitosan Hydrogel with Potential Application in Dental Pulp Repair. ACS Biomaterials Science & Engineering, v. 5, n. 9, p. 4624-33, 2019. Disponível em: https://doi.org/10.1021/acsbiomaterials.9b00713. Acesso em: 11 out. 2025.pt_BR
dc.description.abstractA polpa dentária é um tecido conjuntivo especializado, essencial para a manutenção da vitalidade do dente por meio de complexas interações celulares, vasculares e imunológicas. Embora materiais de capeamento pulpar convencionais sejam clinicamente utilizados, seu potencial regenerativo limitado frequentemente resulta na desvitalização pulpar e no comprometimento da integridade estrutural. Avanços recentes na engenharia tecidual, notadamente a aplicação de matrizes tridimensionais, têm demonstrado resultados promissores na promoção da regeneração do complexo dentino-pulpar e no reparo tecidual biomimético. Esta revisão sistemática e meta-análise teve como objetivo principal avaliar a eficácia de matrizes tridimensionais, na presença ou na ausência de materiais bioativos, como agentes de capeamento pulpar direto em modelos animais. Os desfechos primários avaliados incluíram celularidade, espessura de dentina, formação de ponte de dentina, controle da inflamação, calcificação distrófica e organização pulpar, em comparação com materiais comerciais. Foi conduzida uma busca abrangente nas bases de dados indexadas e literatura cinzenta. A meta-análise de efeitos aleatórios empregou diferenças médias padronizadas (DMPs) e o método da variância inversa. Foram avaliados a heterogeneidade (I²), o viés de publicação (testes de Egger e Begg) e o risco de viés (ferramenta RoB do SYRCLE). As análises estatísticas foram realizadas utilizando o software RevMan (p<0.05). Dezessete estudos preencheram os critérios de inclusão, sendo 13 elegíveis para a meta-análise. O risco de viés foi predominantemente baixo; contudo, a certeza da evidência foi classificada como muito baixa. As matrizes tridimensionais demonstraram um aumento significativo na celularidade (p=0.02; I²=91%), na espessura da dentina (p<0.00001; I²=87%) e no controle da inflamação (p=0.03; I²=20%) em comparação com os grupos controle. Não foram observadas diferenças significativas para os desfechos de formação de ponte de dentina (p=0.30; I²=63%), calcificação distrófica (p=0.14; I²=32%) ou organização pulpar (p=0.10; I²=0%). Este estudo demonstrou que matrizes tridimensionais apresentam um potencial promissor na modulação da atividade celular, na formação de dentina e no controle da resposta inflamatória. No entanto, sua real influência na formação de ponte de dentina, na organização pulpar e na prevenção da calcificação distrófica permanece inconclusiva. A necessidade de estudos de alta qualidade adicionais é imperativa para validar sua segurança e eficácia, e, consequentemente, sua aplicabilidade clínica.pt_BR
dc.language.isopt_BRpt_BR
dc.subjectdentinapt_BR
dc.subjectcapeamento pulpar diretopt_BR
dc.subjectmatrizes tridimensionaispt_BR
dc.subjectScaffoldspt_BR
dc.subjectengenharia tecidualpt_BR
dc.titleUSO DE MATRIZES TRIDIMENSIONAIS NO CAPEAMENTO PULPAR DIRETO EM MODELO ANIMAL: REVISÃO SISTEMÁTICA E META-ANÁLISEpt_BR
dc.typeTCCpt_BR
dc.title.inglesUSE OF THREE-DIMENSIONAL MATRICES IN DIRECT PULP CAPPING IN AN ANIMAL MODEL: SYSTEMATIC REVIEW AND META-ANALYSISpt_BR
dc.description.resumo_abstractThe dental pulp is a specialized connective tissue essential for maintaining tooth vitality through complex cellular, vascular, and immunological interactions. Despite the clinical use of conventional capping materials, their limited regenerative potential frequently results in pulp devitalization and compromised structural integrity. Recent advances in tissue engineering, most notably the application of three-dimensional matrices (scaffolds), have demonstrated promising outcomes in promoting dentin-pulp complex regeneration and biomimetic tissue repair. This systematic review and meta-analysis primarily aimed to evaluate the efficacy of three-dimensional matrices, with or without bioactive materials, as direct pulp capping agents in animal models. The primary outcomes assessed included cellularity, dentin thickness, dentin bridge formation, inflammation control, dystrophic calcification, and pulp organization, compared to commercial reference materials. A comprehensive search was conducted in indexed databases and gray literature. The random-effects meta-analysis employed standardized mean differences (SMD) and the inverse variance method. Heterogeneity ($I^2$), publication bias (Egger’s and Begg’s tests), and risk of bias (SYRCLE’s RoB tool) were assessed. Statistical analyses were conducted using RevMan (p<0.05). Seventeen studies met the inclusion criteria, with 13 eligible for the meta-analysis. The risk of bias was predominantly low; however, the certainty of evidence was classified as very low. The three-dimensional matrices demonstrated a significant increase in cellularity (p=0.02; I²=91%), dentin thickness (p<0.00001; I²=87%), and inflammation control (p=0.03; I²=20%) compared to control groups. No significant differences were observed for the outcomes of dentin bridge formation (p=0.30; I²=63%), dystrophic calcification (p=0.14; I²=32%), or pulp organization (p=0.10; I²=0%). This study demonstrated that three-dimensional matrices present promising potential in modulating cellular activity, dentin formation, and controlling the inflammatory response. However, their actual influence on dentin bridge formation, pulp organization, and the prevention of dystrophic calcification remains inconclusive. The necessity for additional high-quality studies is imperative to validate their safety and efficacy, and consequently, their clinical applicability.pt_BR
Aparece nas coleções:Odontologia - Campus PARQUE ECOLÓGICO

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
GiseleBrito.pdf1,49 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.