Please use this identifier to cite or link to this item: https://repositorio.unichristus.edu.br/jspui/handle/123456789/1370
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCarvalho, Bruna Marjorie Frota-
dc.contributor.authorBarreto, Antonia Jamile Torres-
dc.date.accessioned2022-11-07T19:54:21Z-
dc.date.available2022-11-07T19:54:21Z-
dc.date.issued2022-06-09-
dc.identifier.urihttps://repositorio.unichristus.edu.br/jspui/handle/123456789/1370-
dc.descriptionROBINSON, J. G.; MCCABE, J. F.; STORER, R. The whitening of acrylic dentures: the role of denture cleansers. British Dental Journal, v. 159, n. 8, p. 247–250, out. 1985. BUYUKYILMAZ, Sebnem; RUYTER, I. Color stability of denture base polymers. International Journal of Prosthodontics, v. 7, n. 4, 1994. RIVARD, C.-H.; RHALMI, S.; COILLARD, C. In vivo biocompatibility testing of peek polymer for a spinal implant system: A study in rabbits. Journal of Biomedical Materials Research, v. 62, n. 4, p. 488–498, 9 set. 2002. CRAIG, Robert G. Powers JM. Restorative dental materials. St. Louis: Mosby, 2002. LAI, Y.; LUI, H.; LEE, S. In vitro color stability, stain resistance, and water sorption of four removable gingival flange materials. The Journal of Prosthetic Dentistry, v. 90, n. 3, p. 293–300, set. 2003. PATEL, S. B. et al. The effect of surface finishing and storage solutions on the color stability of resin-based composites. The Journal of the American Dental Association, v. 135, n. 5, p. 587–594, maio 2004. KEYF, Filiz; ETIKAN, İlker. Evaluation of gloss changes of two denture acrylic resin materials in four different beverages. Dental materials, v. 20, n. 3, p. 244-251, 2004. ARIKAN, Ayla et al. An in vitro investigation of water sorption and solubility of two acetal denture base materials. European Journal of Prosthodontics and Restorative Dentistry, v. 13, n. 3, p. 119, 2005. BAGHERI, R.; BURROW, M. F.; TYAS, M. Influence of food-simulating solutions and surface finish on susceptibility to staining of aesthetic restorative materials. Journal of Dentistry, v. 33, n. 5, p. 389–398, maio 2005. NEPPELENBROEK, K. H. et al. Hardness of heat-polymerized acrylic resins after disinfection and long-term water immersion. The Journal of Prosthetic Dentistry, v. 93, n. 2, p. 171–176, fev. 2005. SARAFIANOU, A. et al. Color Stability and Degree of Cure of Direct Composite Restoratives After Accelerated Aging. Operative Dentistry, v. 32, n. 4, p. 406–411, 1 jul. 2007. EWOLDSEN, Nels. What are the clinical disadvantages and limitations associated with metal-free partial dentures?. Journal of the Canadian Dental Association, v. 73, n. 1, p. 45-46, 2007. DA SILVA, F. C. et al. Effectiveness of six different disinfectants on removing five microbial species and effects on the topographic characteristics of acrylic resin. Journal of Prosthodontics: Official Journal of the American College of Prosthodontists, v. 17, n. 8, p. 627–633, 1 dez. 2008. PARANHOS, H. DE F. O. et al. Comparison of physical and mechanical properties of microwave-polymerized acrylic resin after disinfection in sodium hypochlorite solutions. Brazilian Dental Journal, v. 20, n. 4, p. 331–335, 2009. AL-TAIE, Ghassan A.; FATIHALLAH, Abdalbasit A.; HACHIM, Thikra M. Assessment of visible light absorption using different curing cycles and colorant drinks. In vitro study. Journal of baghdad college of dentistry, v. 21, n. 2, 2009. HONG, G. et al. Influence of denture cleansers on the color stability of three types of denture base acrylic resin. The Journal of Prosthetic Dentistry, v. 101, n. 3, p. 205–213, mar. 2009. IMIRZALIOGLU, P. et al. Color Stability of Denture Acrylic Resins and a Soft Lining Material Against Tea, Coffee, and Nicotine. Journal of Prosthodontics, v. 19, n. 2, p. 118–124, fev. 2010. PERACINI, A. et al. Effect of denture cleansers on physical properties of heat-polymerized acrylic resin. Journal of Prosthodontic Research, v. 54, n. 2, p. 78–83, abr. 2010. DUYMUS, ZEYNEP; YANIKOĞLU, Nuran; ARIK, Mustafa. Evaluation of colour changed of acrylic resin materials in the different solutions. Asian Journal of Chemistry, v. 22, n. 9, 2010. ABUZAR, M. A. et al. Evaluating surface roughness of a polyamide denture base material in comparison with poly (methyl methacrylate). Journal of Oral Science, v. 52, n. 4, p. 577–581, 2010. BRASIL. MINISTÉRIO DA SAÚDE (MS). SECRETARIA DE ATENÇÃO À SAÚDE. DEPARTAMENTO DE ATENÇÃO BÁSICA. COORDENAÇÃO NACIONAL DE SAÚDE BUCAL. Pesquisa Nacional de Saúde Bucal-2010. 2010. TAKABAYASHI, Yota. Characteristics of denture thermoplastic resins for non-metal clasp dentures. Dental materials journal, p. 1007010034-1007010034, 2010. SEPÚLVEDA-NAVARRO, W. F. et al. Color stability of resins and nylon as denture base material in beverages: Color stability of resins and nylon. Journal of prosthodontics: official journal of the American College of Prosthodontists, v. 20, n. 8, p. 632–638, 2011. DE FREITAS FERNANDES, Frederico Silva et al. Efficacy of denture cleansers on Candida spp. biofilm formed on polyamide and polymethyl methacrylate resins. The Journal of prosthetic dentistry, v. 105, n. 1, p. 51-58, 2011. FELTON, David et al. Evidence‐based guidelines for the care and maintenance of complete dentures: A publication of the American College of Prosthodontists. Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry, v. 20, p. S1-S12, 2011. SINGH, S. V.; AGGARWAL, Priyanki. Effect of tea, coffee and turmeric solutions on the colour of denture base acrylic resin: An in vitro study. The Journal of Indian Prosthodontic Society, v. 12, n. 3, p. 149-153, 2012. WALDEMARIN, Renato FA et al. Color change in acrylic resin processed in three ways after immersion in water, cola, coffee, mate and wine. Acta Odontológica Latinoamericana, v. 26, n. 3, p. 138-143, 2013. KISTLER, F. et al. PEEK-Hochleistungskuns tstoffeimimplantat-prothetischen Workflow. Implantologie J, v. 7, p. 17-42, 2013. RZANNY, A.; GOBEL, F.; FACHET, M. BioHPP summary of results for material tests. Quintessenz Zahntech MAG, v. 39, p. 2-10, 2013. ADLER, Stephan et al. Compression-moulding rather than milling: a wealth of possible applications for high performance polymers. Quintessenz Zahntech, v. 39, n. 3, p. 2-10, 2013. SIEWERT, B.; PARRA, M. A new group of materials in dentistry PEEK als Gerüstmaterial bei 12-gliedrigen implantatgetragenen Brücken (A new group of materials in dentistry. PEEK as a framework material for 12-piece implant-supported bridges). Z Zahnärztl Implantol, v. 29, p. 148, 2013. ALTARAWNEH, Sandra et al. Clinical and histological findings of denture stomatitis as related to intraoral colonization patterns of Candida albicans, salivary flow, and dry mouth. Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry, v. 22, n. 1, p. 13-22, 2013. UHRENBACHER, Julia et al. The effect of surface modification on the retention strength of polyetheretherketone crowns adhesively bonded to dentin abutments. The Journal of prosthetic dentistry, v. 112, n. 6, p. 1489-1497, 2014. SAGSOZ, Nurdan Polat et al. Color changes of polyamid and polymetyhl methacrylate denture base materials. Open Journal of Stomatology, v. 4, n. 10, p. 489, 2014. AMIN, Faiza et al. Effect of denture cleansers on the color stability of heat cure acrylic resin. J Coll Physicians Surg Pak, v. 24, n. 11, p. 787-90, 2014. WIECKIEWICZ, M. et al. Physical Properties of Polyamide-12 versus PMMA Denture Base Material. BioMed Research International, v. 2014, p. 1–8, 2014. ALI, Umar; KARIM, Khairil Juhanni Bt Abd; BUANG, Nor Aziah. A review of the properties and applications of poly (methyl methacrylate)(PMMA). Polymer Reviews, v. 55, n. 4, p. 678-705, 2015. SHARMA, D. et al. Comparison of color stability of four heat cure denture base resins in various staining solutions and denture cleansers: an in vitro study. IJ Pre Clin Dent Res, v. 2, n. 7, p. 2-8, 2015. POLYCHRONAKIS, Nick C. et al. Effects of cleansing methods on 3-D surface roughness, gloss and color of a polyamide denture base material. Acta Odontologica Scandinavica, v. 73, n. 5, p. 353-363, 2015. LU, Tao et al. Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone-like elastic modulus. Biomaterials, v. 51, p. 173-183, 2015. ZOIDIS, Panagiotis; PAPATHANASIOU, Ioannis; POLYZOIS, Gregory. The use of a modified poly‐ether‐ether‐ketone (PEEK) as an alternative framework material for removable dental prostheses. A clinical report. Journal of Prosthodontics, v. 25, n. 7, p. 580-584, 2016. MOLDOVAN, Ovidiu; RUDOLPH, Heike; LUTHARDT, Ralph G. Clinical performance of removable dental prostheses in the moderately reduced dentition: a systematic literature review. Clinical Oral Investigations, v. 20, n. 7, p. 1435-1447, 2016. LOHITHA, K. et al. Color stability of heat cure acrylic resin subjected to simulated short term immersion in fast acting denture cleansers. Annals of medical and health sciences research, v. 6, n. 5, p. 291-295, 2016. HEIMER, Sina; SCHMIDLIN, Patrick R.; STAWARCZYK, Bogna. Discoloration of PMMA, composite, and PEEK. Clinical oral investigations, v. 21, n. 4, p. 1191-1200, 2017. AL‐THOBITY, Ahmad M. et al. Impact of denture cleansing solution immersion on some properties of different denture base materials: an in vitro study. Journal of Prosthodontics, v. 28, n. 8, p. 913-919, 2019. ALEXAKOU, Elli et al. PEEK high performance polymers: A review of properties and clinical applications in prosthodontics and restorative dentistry. Eur J Prosthodont Restor Dent, v. 27, n. 3, p. 113-21, 2019. PAPATHANASIOU, Ioannis et al. The use of PEEK in digital prosthodontics: A narrative review. BMC Oral Health, v. 20, n. 1, p. 1-11, 2020.pt_BR
dc.description.abstractDiversas substâncias químicas têm sido utilizadas no processo de desinfecção e higiene de dispositivos à base de polímeros, no entanto, muitas destas substâncias são utilizadas de forma empírica. O objetivo deste estudo foi avaliar as propriedades físicas e mecânicas, através da estabilidade de cor e da rugosidade de superfície de diferentes polímeros, polimetilmetacrilato (PMMA), poliamida e polieteretercetona (PEEK), após imersões em diferentes soluções desinfetantes. Foi confeccionado um total de 105 amostras de cada material (n=15) em formato cilíndrico (15mmx4mm) e os grupos divididos de acordo com o tipo de material: Resina Acrílica Convencional (PMMA), Poliamidas e a Polieteretercetona (PEEK), que foram submetidos à imersão em meios desinfetantes como, Listerine (LI), Cepacol (CE), Corega Tabs (CT), ácido paracético 10% (AP) hipoclorito de sódio 1% (NaOCl), Periogard 0,12% (digluconato de diclorexidina) e água destilada (AD) como controle. Foram simuladas aplicações de 12/12 horas, por 2 semanas, o que equivale a um período de 2 anos. Todas as amostras foram pesadas antes e após a exposição ao tratamento, a fim de analisar a perda de massa. Cinco linhas paralelas (1 mm) foram registradas em cada amostra para medir a rugosidade da superfície (Ra). E estabilidade de cor foi medida por um colorímetro portátil. Os dados foram analisados por foram expressos em forma de média e desvio-padrão, submetidos ao teste de normalidade de Kolmogorov-Srminov e comparados utilizando o teste ANOVA-3-way para medidas repetidas seguido dos pós teste de Bonferroni (p<0,05, SPSS 22.0). Foi observado que em relação a análise de rugosidade de superfície a poliamida demonstrou maior diferença (p<0.001), quando comparada aos demais polímeros, após simulado 1 ano de imersão. Houve diferença significativa na mudança de cor (ΔE) para todos os grupos experimentais mais com maiores alterações no PMMA e poliamida quando tratados com NaClO 1%, cepacol e ácido paracético 10% (p<0.001), comparados ao PEEK. Ocorreu alteração da massa em relação aos tempos de imersões (p<0.05), onde o Corega tabs apresentou maior capacidade de alteração frente aos materiais (p<0.05). Pode-se concluir que o PEEK parece mais estável contra desgaste e descolorações do que o o PMMA e a poliamida. Mais pesquisas e ensaios clínicos são necessários para confirmar tais resultados.pt_BR
dc.language.isopt_BRpt_BR
dc.subjectPolieteretercetona.pt_BR
dc.subjectResina acrílica. .pt_BR
dc.subjectRugosidade de superfície.pt_BR
dc.titleAVALIAÇÃO DA RUGOSIDADE E ESTABILIDADE DE COR DE DIFERENTES POLÍMEROS APÓS IMERSÕES EM SOLUÇÕES DESINFETANTESpt_BR
dc.typeTCCpt_BR
dc.title.inglesEVALUATION OF RUGOSITY AND COLOR STABILITY OF DIFFERENT POLYMERS AFTER IMMERSIONS IN DISINFECTANT SOLUTIONSpt_BR
dc.description.resumo_abstractSeveral chemical substances have been used in the disinfection and hygiene process of polymer-based devices, however, many of these substances are used empirically. The objective of this study was to evaluate the physical and mechanical properties, through the color stability and surface roughness of different polymers, polymethylmethacrylate (PMMA), polyamide and polyetheretherketone (PEEK), after immersion in different disinfectant solutions. A total of 105 samples of each material (n=15) were made in a cylindrical shape (15mmx4mm) and the groups were divided according to the type of material: Conventional Acrylic Resin (PMMA), Polyamides and Polyetheretherketone (PEEK), which were subjected to immersion in disinfectant media such as Listerine (LI), Cepacol (CE), Corega Tabs (CT), 10% paracetic acid (AP), 1% sodium hypochlorite (NaOCl), 0.12% Periogard (dichlorhexidine digluconate) and distilled water (AD) as a control. Applications of 12/12hours were simulated for 2 weeks, which is equivalent to a period of 2 years. All samples were weighed before and after exposure to the treatment in order to analyze the mass loss. Five parallel lines (1 mm) were recorded on each sample to measure the surface roughness (Ra). And color stability was measured by a handheld colorimeter. Data were analyzed by being expressed as mean and standard deviation, submitted to the Kolmogorov-Srminov normality test and compared using the 3-way ANOVA test for repeated measures followed by the Bonferroni post test (p<0.05 , SPSS 22.0). It was observed that in relation to the surface roughness analysis, polyamide showed a greater difference (p<0.001), when compared to the other polymers, after simulated 1 year of immersion. There was a significant difference in color change (ΔE) for all experimental groups but with greater changes in PMMA and polyamide when treated with 1% NaClO, cepacol and 10% paracetic acid (p<0.001), compared to PEEK. There was a change in the mass in relation to the immersion times (p<0.05), where the Corega tabs showed a greater ability to change compared to the materials (p<0.05). It can be concluded that PEEK appears more stable against wear and discoloration than PMMA and polyamide. More research and clinical trials are needed to confirm these results.pt_BR
Appears in Collections:Odontologia - Trabalhos de Conclusão de Curso - Campus BENFICA

Files in This Item:
File Description SizeFormat 
Barreto, Jamile.pdf570.56 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.